Skip to main content
Log in

Thermal Diffusivity and Speed of Sound of Saturated Pentane from Light Scattering

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Transport and thermodynamic properties of pentane are necessary for the design and verification of reactors in pentane isomerization and degradation processes. However, there are few experimental data of these properties, especially in the high-temperature region. In this work, the thermal diffusivity and the sound speed of pentane have measured by dynamic light scattering and Brillouin light scattering, respectively. Pentane has been investigated under saturated conditions over a wide temperature range, from about 300 K up to the liquid–vapor critical point. It is estimated that: the standard uncertainty of temperature is \(u(T) = 0.01\) K for the hydrodynamic region and \(u(T) = 0.026\) K for the critical region; the relative expanded uncertainty in the thermal diffusivity is \(U_\mathrm{r}(a) = 0.03\) and the relative expanded uncertainty in the speed of sound is \(U_\mathrm{r}(c_\mathrm{s}) = 0.005\) with a coverage factor of \(k = 2\). The thermal diffusivity and the sound-speed experimental data are also represented as functions of temperature. Finally, the results are discussed in detail in comparison with literature results and various prediction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. O.A. Anunziata, G.V. Mercado, L.B. Pierella, Catal. Lett. 87, 167 (2003)

    Article  Google Scholar 

  2. F. Audonnet, A.A.H. Pádua, Fluid Phase Equilib. 181, 147 (2001)

    Article  Google Scholar 

  3. B.J. Berne, R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Dover, New York, 2000)

    Google Scholar 

  4. P. Debye, J. Phys. Chem. 51, 18 (1947)

    Article  Google Scholar 

  5. A.B. Leung, K.I. Suh, R.R. Ansari, Appl. Opt. 45, 2186 (2006)

    Article  ADS  Google Scholar 

  6. Y. Nagasaka, A. Nagashima, Int. J. Thermophys. 9, 923 (1988)

    Article  ADS  Google Scholar 

  7. S. Will, A. Leipertz, Int. J. Thermophys. 22, 317 (2001)

    Article  Google Scholar 

  8. M. Pitschmann, J. Straub, Int. J. Thermophys. 23, 877 (2002)

    Article  Google Scholar 

  9. K. Oki, Y. Nagasaka, Int. J. Thermophys. 31, 1928 (2010)

    Article  ADS  Google Scholar 

  10. D. Subramanian, M.A. Anisimov, J. Phys. Chem. B 115, 9179 (2011)

    Article  Google Scholar 

  11. B. Kruppa, J. Straub, Int. J. Thermophys. 18, 807 (1997)

    Article  ADS  Google Scholar 

  12. A.P. Fröba, C. Botero, A. Leipertz, Int. J. Thermophys. 27, 1609 (2006)

  13. A.P. Fröba, K. Krzeminski, A. Leipertz, Int. J. Thermophys. 25, 987 (2004)

  14. R.D. Mountain, Rev. Mod. Phys. 38, 205 (1966)

    Article  ADS  Google Scholar 

  15. S. Wang, Y. Zhang, M. He, S. Zhang, X. Zheng, Fluid Phase Equilib. 376, 202 (2014)

  16. J.B. Lastovka, Ph.D. Thesis, MIT, Cambridge, 1962

  17. G. Benedek, T. Greytak, Proc. IEEE 53, 1623 (1965)

    Article  Google Scholar 

  18. E. Fransson, A. Barreau, J. Vidal, J. Chem. Eng. Data 37, 521 (1992)

    Article  Google Scholar 

  19. L.T. Carmichael, J. Jacobs, B.H. Sage, J. Chem. Eng. Data 14, 31 (1969)

    Article  Google Scholar 

  20. H. Watanabe, D.J. Seong, Int. J. Thermophys. 23, 337 (2002)

    Article  Google Scholar 

  21. R. Span, W. Wagner, Int. J. Thermophys. 24, 41 (2001)

    Article  Google Scholar 

  22. M. Chávez, J.M. Palaclos, R. Tsumura, J. Chem. Eng. Data 27, 350 (1982)

    Article  Google Scholar 

  23. V.K. Sachdeva, V.S. Nanda, J. Chem. Phys. 75, 4745 (1981)

    Article  ADS  Google Scholar 

  24. R.E. Apfel, J. Acoust. Soc. Am. 59, 339 (1976)

    Article  ADS  Google Scholar 

  25. G. Simonsohn, F. Wagner, Opt. Lett. 14, 110 (1989)

    Article  ADS  Google Scholar 

  26. K. Kraft, A. Leipertz, Appl. Opt. 32, 3886 (1993)

    Article  ADS  Google Scholar 

  27. E. Wilhelm, A. Asenbaum, in Heat Capacities: Liquids, Solutions and Vapours, ed. by E. Wilhelm, T.M. Letcher (RSC Publishing, Cambridge, 2010), p. 248

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (NSFC Nos. 51106129 and 50976091), and the Fundamental Research Funds for the Central University. The authors would like to express their gratitude to A.P. Fröba for help in establishing, the dynamic light scattering experiment system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Gang He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, Y., He, MG. et al. Thermal Diffusivity and Speed of Sound of Saturated Pentane from Light Scattering. Int J Thermophys 35, 1450–1464 (2014). https://doi.org/10.1007/s10765-014-1718-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1718-x

Keywords

Navigation