Skip to main content
Log in

Densities of L-Glutamic Acid HCl Drug in Aqueous NaCl and KCl Solutions at Different Temperatures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Densities \((\rho )\) of (0.01 to 0.07) \(\hbox {mol}{\cdot } \hbox {kg}^{-1}\) L-Glutamic acid HCl (L-HCl) drug in water, and in aqueous NaCl and KCl (0.5 and 1.0) \(\hbox {mol}{\cdot } \hbox {kg}^{-1}\) solutions have been reported as a function of temperature at \(T = (298.15, 303.15, 308.15\), and 313.15) K and atmospheric pressure. The accurate density \((\rho )\) values are used to estimate the various parameters such as the apparent molar volume \((V_{2,{\upphi }})\), the partial molar volume \((V_{2}^{\infty })\), the isobaric thermal expansion coefficient \((\alpha _{2})\), the partial molar expansion \((E_{2}^{\infty })\), and Hepler’s constant \((\partial ^{2}V_{2}^{\infty }/\partial T^{2})_{P}\). The Cosphere overlap model is used to understand the solute–solvent interactions in a ternary mixture (L-HCl drug + NaCl or KCl + water). Hepler’s constant \((\partial ^{2}V_{2}^{\infty }/\partial T^{2})_\mathrm{P}\) is utilized to interpret the structure-making or -breaking ability of L-HCl drug in aqueous NaCl and KCl solutions, and the results are inferred that L-HCl drug acts as a structure maker, i.e., kosmotrope in aqueous NaCl solutions and performs as a structure breaker, i.e., chaotrope in aqueous KCl solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Ryshetti, A. Gupta, S.J. Tangeda, R.L. Gardas, J. Chem. Thermodyn. 77, 123 (2014)

    Article  Google Scholar 

  2. Y. Yang, T.C. Bai, Li Yu-Li, J. Chem. Eng. Data 56, 412 (2011)

    Article  Google Scholar 

  3. S.S. Dhondge, S.P. Zodape, D.V. Parwate, J. Chem. Thermodyn. 48, 207 (2012)

    Article  Google Scholar 

  4. H. Kumar, K. Kaur, J. Chem. Eng. Data 58, 203 (2013)

    Article  Google Scholar 

  5. P. Sharma, S. Chauhan, V.K. Syal, M.S. Chauhan, Int. J. Thermophys. 29, 643 (2008)

    Article  ADS  Google Scholar 

  6. P. Sharma, S. Chauhan, M.S. Chauhan, V.K. Syal, Ind. J. Pure Appl. Phys. 46, 839 (2008)

    Google Scholar 

  7. N. Croce, S. Bernardini, D.S. Cecca, C. Caltagirone, F. Angelucci, J. Neurosci. Methods 217, 26 (2013)

    Article  Google Scholar 

  8. M.A.Usmani Riyazuddeen, J. Chem. Eng. Data 56, 3504 (2011)

    Article  Google Scholar 

  9. B. Satyanarayana, B.R. Kumar, T.S. Jyostna, N. Satyanarayana, J. Chem. Thermodyn. 39, 16 (2007)

    Article  Google Scholar 

  10. F. Chenlo, R. Moreira, G. Pereira, A. Ampudia, J. Food. Eng. 54, 347 (2002)

    Article  Google Scholar 

  11. A. Stefaniu, O. Iulian, O. Ciocirlan, Rev. Roum. Chim. 56, 869 (2011)

    Google Scholar 

  12. A. Pal, S. Soni, J. Chem. Eng. Data 58, 18 (2013)

    Article  Google Scholar 

  13. A.K. Nain, R. Pal, R.K. Sharma, J. Chem. Thermodyn. 43, 603 (2011)

    Article  Google Scholar 

  14. S.H. Baluja, A. Solanki, N. Kachhadia, Russ. J. Phys. Chem. A 81, 742 (2007)

    Article  Google Scholar 

  15. A. Pal, N. Chauhan, J. Mol. Liq. 149, 29 (2009)

    Article  Google Scholar 

  16. J.F. Desnoyers, G. Perron, J. Solut. Chem. 1, 19 (1972)

    Article  Google Scholar 

  17. M.F. Hossain, T.K. Biswas, M.N. Islam, M.E. Huque, Monatsh Chem. 141, 1297 (2010)

    Article  Google Scholar 

  18. M.J. Iqbal, M.A. Chaudhry, J. Chem. Eng. Data 54, 2772 (2009)

    Article  Google Scholar 

  19. F. Shahidi, P.G. Ferrell, J.T. Edwards, J. Solut. Chem. 5, 807 (1976)

    Article  Google Scholar 

  20. S. Ryshetti, B.K. Chennuri, R. Noothi, S.J. Tangeda, R.L. Gardas, Thermochim. Acta 597, 71 (2014)

    Article  Google Scholar 

  21. V. Singh, P.K. Chhotaray, R.L. Gardas, J. Chem. Thermodyn. 71, 37 (2014)

    Article  Google Scholar 

  22. T.S. Banipal, J. Kaur, P.K. Banipal, A.K. Sood, K. Singh, J. Chem. Eng. Data 56, 2751 (2011)

    Article  Google Scholar 

  23. S. Kant, K. Sharma, Parul, Chem. Sci. Trans. 2, 727 (2013)

    Google Scholar 

  24. F.J. Millero, Chem. Rev. 71, 147 (1971)

    Article  Google Scholar 

  25. F.J. Millero, in Structure and Transport Properties in Water and Aqueous Solutions, ed. by R.A. Horne (Wiley, New York, 1971), p. 622

  26. F.J. Millero, W.D. Hansen, J. Phys. Chem. 72, 1758 (1986)

    Article  Google Scholar 

  27. H. Wang, J. Wang, S. Zhang, J. Chem. Eng. Data 57, 1939 (2012)

    Article  Google Scholar 

  28. L.G. Hepler, Can. J. Chem. 47, 4613 (1969)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to University Grants Commission (UGC), Govt. of India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savitha Jyostna Tangeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryshetti, S., Raghuram, N., Rani, E.J. et al. Densities of L-Glutamic Acid HCl Drug in Aqueous NaCl and KCl Solutions at Different Temperatures. Int J Thermophys 37, 43 (2016). https://doi.org/10.1007/s10765-015-2009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-015-2009-x

Keywords

Navigation