Skip to main content

Advertisement

Log in

Compressed Liquid Densities and Helmholtz Energy Equation of State for Fluoroethane (R161)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this study, compressed liquid densities of Fluoroethane (R161, CAS No. 353-36-6) were measured using a high-pressure vibrating-tube densimeter over the temperature range from (283 to 363) K with pressures up to 100 MPa. A Helmholtz energy equation of state for R161 was developed from these density measurements and other experimental thermodynamic property data from the literature. The formulation is valid for temperatures from the triple point temperature of 130 K to 420 K with pressures up to 100 MPa. The approximate uncertainties of properties calculated with the new equation of state are estimated to be 0.25 % in density, 0.2 % in saturated liquid density between 230 K and 320 K, and 0.2 % in vapor pressure below 350 K. Deviations in the critical region are higher for all properties. The extrapolation behavior of the new formulation at high temperatures and high pressures is reasonable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.T. Wu, Y. Zhou, Int. J. Thermophys. 33, 220 (2012)

    Article  ADS  Google Scholar 

  2. J.G. Yin, J.T. Wu, X.Y. Meng, I. Abdulagatov, J. Chem. Thermodyn. 43, 1371 (2011)

    Article  Google Scholar 

  3. G.S. Qiu, X.Y. Meng, J.T. Wu, J. Chem. Thermodyn. 60, 150 (2013)

    Article  Google Scholar 

  4. D. Fang, Y. Li, X.Y. Meng, J.T. Wu, J. Chem. Thermodyn. 69, 36 (2014)

    Article  Google Scholar 

  5. W. Wagner, A. Pruss, J. Phys. Chem. Ref. Data 31, 387 (2002)

    Article  ADS  Google Scholar 

  6. A.L. Beyerlein, D.D. DesMarteau, I. Kul, G. Zhao, Fluid Phase Equilibria. 150–151, 287 (1998)

    Article  Google Scholar 

  7. R. Span, Multiparameter Equations of State-An Accurate Source of Thermodynamic Property Data (Springer, Berlin, 2000)

    Book  Google Scholar 

  8. M. Frenkel, V. Diky, C.D. Muzny, A.F. Kazakov, J.W. Magee, I.M. Abdulagarov, J.W. Kang, NIST ThermoData Engine, NIST Standard Reference Database 103b, Version 5.0 (Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, 2010)

  9. B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The Properties of Gases and Liquids, 5th edn. (McGraw-Hill, New York, 2000)

    Google Scholar 

  10. D.E. Stull, F.D. Mayfield, Ind. Eng. Chem. 35, 639 (1943)

    Article  Google Scholar 

  11. D.C. Smith, R.A. Saunders, J.R. Nielsen, E.E. Ferguson, J. Chem. Phys. 20, 847 (1952)

    Article  ADS  Google Scholar 

  12. E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, version 9.1 (Standard Reference Data, National Institute of Standards and Technology, Gaithersburg, 2013)

  13. E.W. Lemmon, R.T. Jacobsen, J. Phys. Chem. Ref. Data 34, 68 (2005)

    Article  ADS  Google Scholar 

  14. A.V. Grosse, R.C. Wackher, C.B. Linn, J. Phys. Chem. 44, 275 (1940)

    Article  Google Scholar 

  15. Q. Chen, R.H. Hong, G.M. Chen, Fluid Phase Equilibria. 237, 111 (2005)

    Article  Google Scholar 

  16. Q. Chen, R.H. Hong, G.M. Chen, J. Chem. Eng. Data 50, 1586 (2005)

    Article  Google Scholar 

  17. X.L. Cui, G.M. Chen, X.H. Han, Q. Wang, Fluid Phase Equilibria. 245, 155 (2006)

    Article  Google Scholar 

  18. I. Kul, D.D. DesMarteau, A.L. Beyerlein, Fluid Phase Equilibria. 173, 263 (2000)

    Article  Google Scholar 

  19. H.S. Booth, C.F. Swinehart, J. Am. Chem. Soc. 57, 1337 (1935)

    Article  Google Scholar 

  20. X.Q. Dong, M.Q. Gong, J.S. Liu, J.F. Wu, J. Chem. Eng. Data 55, 3383 (2010)

    Article  Google Scholar 

  21. X.Q. Dong, M.Q. Gong, Y. Zhang, J.F. Wu, J. Chem. Eng. Data 53, 2193 (2008)

    Article  Google Scholar 

  22. F.C. Vidaurri, J. Chem. Eng. Data 20, 349 (1975)

    Article  Google Scholar 

  23. C.P. Smyth, K.B. McAlpine, J. Chem. Phys. 2, 499 (1934)

    Article  ADS  Google Scholar 

  24. X.H. Han, G.M. Chen, C.S. Li, X.G. Qiao, X.L. Cui, Q. Wang, J. Chem. Eng. Data 51, 1232 (2006)

    Article  Google Scholar 

  25. X.H. Han, Y.J. Xu, X.W. Min, Z.J. Gao, Q. Wang, G.M. Chen, J. Chem. Eng. Data 56, 3038 (2011)

    Article  Google Scholar 

  26. Q. Chen, R.H. Hong, G.M. Chen, J. Zhejiang Univ. Sci. A. 7, 259 (2006)

    Article  Google Scholar 

  27. C.F. Chueh, A.C. Swanson, Can. J. Chem. Eng. 51, 596 (1973)

    Article  Google Scholar 

  28. B.I. Lee, M.G. Kesler, AIChE J. 21, 510 (1975)

    Article  Google Scholar 

  29. C.M. Bignell, P.J. Dunlop, J. Chem. Phys. 98, 4889 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Eric W. Lemmon from NIST for his kind help and useful suggestions. The authors acknowledge the financial support of the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20130201110046), the National Natural Science Foundation of China (No. 51176154), and Natural Science Foundation of Changchun Normal University (No. 2014007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyang Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, H., Fang, D., Gao, K. et al. Compressed Liquid Densities and Helmholtz Energy Equation of State for Fluoroethane (R161). Int J Thermophys 37, 55 (2016). https://doi.org/10.1007/s10765-016-2061-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2061-1

Keywords

Navigation