Skip to main content
Log in

A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys

  • 20th ECTP
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A novel vibrating finger viscometer for high-temperature measurement in liquid metals and alloys up to 1823 K was constructed. The dynamic viscosity (\(\eta \)) of the liquid fluid is measured as a product of \((\rho \cdot \eta )^{0.5}\) and the relative change of the field coil input for a constant amplitude recording at the resonant frequency of the oscillator. The viscometer was calibrated at 298 K using reference silicon oils with varying kinematic viscosities (\(\nu \)), \((0.79\hbox { to } 200)\times 10^{-6}\hbox { m}^{2}\cdot \hbox {s}^{-1}\). In the present study, the viscosity of liquid gold (\(99.99\,\%\) Au), silver (\(99.9\, \%\) Ag), and tin (\(99.9\,\%\) Sn) was measured. The viscosities expressed as an Arrhenius function of temperature are:

$$\begin{aligned} \hbox {for Au:}\quad \quad \hbox {ln }\eta= & {} -0.1990+\frac{2669}{T}\\ \hbox {for Ag:} \quad \quad \hbox {ln }\eta= & {} -0.4631+\frac{2089}{T}\\ \hbox {for Sn:} \quad \quad \hbox {ln }\eta= & {} -0.5472+\frac{671}{T} \end{aligned}$$

The viscosity values are consistent within the range of available literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.C. Mills, L. Courtney, R.F. Brooks, B.J. Monaghan, ISIJ Int. 40, S120 (2000)

    Article  Google Scholar 

  2. R.F. Brooks, A.T. Dinsdale, P.N. Quested, Meas. Sci. Technol. 16, 354 (2005)

    Article  ADS  Google Scholar 

  3. Z. Morita, T. Iida, M. Kawamoto, A. Mori, Tetsu–Hagane J. Iron Steel Inst. Jpn. 70, 1242 (1984)

    Google Scholar 

  4. T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Clarendon Press, Oxford, 1993)

    Google Scholar 

  5. J. Klostermann, R. Schwarze, M. Weider, C. Brücker, Steel Res. Int. 82, 1113 (2011)

    Article  Google Scholar 

  6. C.G. Aneziris, W. Schärfl, H. Biermann, U. Martin, Int. J. Appl. Ceram. Technol. 6, 727 (2009)

    Article  Google Scholar 

  7. A. Jahn, K.-P. Steinhoff, T. Dubberstein, P. Franke, M. Weider, S. Wolf, A. Kovalev, A. Glage, A. Weiß, W. Schärfl, K. Eigenfeld, L. Krüger, P.R. Scheller, Steel Res. Int. 85, 477 (2014)

    Article  Google Scholar 

  8. E.W. Washburn, Phys. Rev. 17, 273 (1921)

    Article  ADS  Google Scholar 

  9. T. Dubberstein, M. Schürmann, H.-P. Heller, H. Chaves, Patent DE102014015301 B3, (2015)

  10. C. Solomons, M.S. White, Trans. Faraday Soc. 65, 305 (1969)

    Article  Google Scholar 

  11. S. Salon, V. Armenio, A. Crise, J. Fluid Mech. 570, 253 (2007)

    Article  ADS  Google Scholar 

  12. H. Schlichting, K. Gersten, Grenzschicht-Theorie (Springer, Berlin, 2006)

    Google Scholar 

  13. B.L. Jensen, B.M. Sumer, J. Fredsøe, J. Fluid Mech. 206, 265 (1989)

    Article  ADS  Google Scholar 

  14. T. Iida, M. Kawamoto, S. Fujimoto, Z. Morita, Tetsu–Hagane J. Iron Steel Inst. Jpn. 71, 1490 (1985)

    Google Scholar 

  15. T. Dubberstein, H.-P. Heller, Adv. Eng. Mater. 15, 583 (2013)

    Article  Google Scholar 

  16. E. Gebhardt, G. Wörwag, Z. Für Met. 41, 358 (1951)

    Google Scholar 

  17. J. Brillo, I. Egry, H.S. Giffard, A. Patti, Int. J. Thermophys. 25, 1881 (2004)

    Article  ADS  Google Scholar 

  18. M.J. Assael, A.E. Kalyva, K.D. Antoniadis, R.M. Banish, I. Egry, J. Wu, E. Kaschnitz, W.A. Wakeham, High Temp.–High Press. 41, 161 (2012)

    Google Scholar 

  19. M.J. Assael, A.E. Kalyva, K.D. Antoniadis, R. Michael Banish, I. Egry, J. Wu, E. Kaschnitz, W.A. Wakeham, J. Phys. Chem. Ref. Data 39, 033105 (2010)

    Article  ADS  Google Scholar 

  20. Wacker Siliconöle AK, Wacker-Chemie GmbH, 4405 1.02 (2001)

  21. T. Dubberstein, H.-P. Heller, High Temp.-High Press. 1, 393–406 (2014)

    Google Scholar 

  22. M. Kehr, Aufbau Eines Hochtemperaturviskosimeters Und Messung Der Viskosität von Schmelzen Des Systems Aluminium–Nickel (2009)

  23. E. Gebhardt, M. Becker, Z. Für Met. 41, 111 (1951)

    Google Scholar 

  24. T. Iida, Z. Morita, S. Takeuchi, Nippon Kinzoku Gakkaishi J. Jpn. Inst. Met. 39, 1169 (1975)

    Google Scholar 

  25. L. Martin-Garin, R. Martin-Garin, P. Desré, J. Common Met. 59, P1 (1978)

    Article  Google Scholar 

  26. H. Schenck, M.G. Frohberg, K. Hoffmann, Arch. Für Eisenhüttenwes. 34, 93 (1963)

    Google Scholar 

  27. T. Iida, T. Kumada, M. Washio, Z. Morita, Nippon Kinzoku Gakkai-Si 44, 1392 (1980)

    Google Scholar 

  28. M. Kehr, W. Hoyer, I. Egry, Int. J. Thermophys. 28, 1017 (2007)

  29. W. Menz, F. Sauerwald, Acta Metall. 14, 1617 (1966)

    Article  Google Scholar 

  30. T. Gancarz, Z. Moser, W. Gąsior, J. Pstruś, H. Henein, Int. J. Thermophys. 32, 1210 (2011)

    Article  ADS  Google Scholar 

  31. Y. Plevachuk, V. Sklyarchuk, W. Hoyer, I. Kaban, J. Mater. Sci. 41, 4632 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the German Research Foundation (DFG) within the Collaborative Research Centre SFB 799 (TRIP-Matrix-Composite) at the Institute of Iron and Steel Technology IEST, TU Bergakademie Freiberg, which is hereby gratefully acknowledged. The authors also acknowledge the technician at IEST strongly supporting the construction of the new viscometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Dubberstein.

Additional information

This article is part of the selected papers of the 20th European Conference for Thermophysical Properties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubberstein, T., Schürmann, M., Chaves, H. et al. A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys. Int J Thermophys 37, 100 (2016). https://doi.org/10.1007/s10765-016-2104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2104-7

Keywords

Navigation