Skip to main content

Advertisement

Log in

Thermal Conductivity of n-Pentadecane (C15H32)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An apparatus based on the transient short-hot-wire method was constructed for obtaining the thermal conductivity of fluids. The apparatus was verified by using toluene before the experiment. Thermal conductivity of the liquid n-pentadecane (C15H32) was acquired in this paper. The temperature range of the experimental system is from 317 K to 577 K, and pressure range is from 1 MPa to 20 MPa. Thermal conductivities of n-pentadecane were correlated as a function of temperature and pressure. And the absolute average deviation and maximum deviation of experimental data from values calculated by polynomial are 1.23 % and 5.34 %, respectively. The uncertainty of thermal conductivity over all measurements is less than 2 %. At last, the thermal conductivities of n-pentadecane in this work were compared with the literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

q :

Heat power per unit length of hot wire

a :

Thermal diffusivity

\( \rho \) :

Density

c :

Isobaric heat capacity

t :

Elapsed time

r 0 :

Radius of hot wire

P :

Pressure

T :

Temperature

R eff :

Resistance of actual short-hot-wire

\( T_{i}^{'} \) :

The temperature at the end of the last time step at node i Fourier transform value

\( \Delta t \) :

The discrete time step

a 0a 7 :

Fitting parameters

b 1b 3 :

Fitting parameters

λ :

Thermal conductivity

λ exp :

Measured thermal conductivity

λ ref :

Thermal conductivity from reference

λ cal :

Calculated thermal conductivity

f:

Fluid to be measured

w:

Short-hot-wire

i :

Correction terms

exp:

Experimental data

ref:

Data from reference

cal:

Calculated value

References

  1. G.B. Bruening, W.S. Chang, Cooled cooling air systems for turbine thermal management: ASME Paper 1999-GT-14 (ASME, New York, 1999)

    Book  Google Scholar 

  2. H. Huang, L.J. Spadaccini, D.R. Sobel, Fuel-cooled thermal management for advanced aero engines. J. Eng. Gas Turbines Power 126(2), 284–293 (2004)

    Article  Google Scholar 

  3. T. Edwards, Cracking and deposition behavior of super-critical hydrocarbon aviation fuel. Combust. Sci. Technol. 178(1), 307–334 (2006)

    Article  MathSciNet  Google Scholar 

  4. B. Le Neindre, P. Desmarest, G. Lombardi et al., Thermal conductivity of gaseous and liquid n-pentane. Fluid Phase Equilib. 460, 146–154 (2018)

    Article  Google Scholar 

  5. Macías-Salinas Ricardo, Modeling the thermal conductivity of n-alkanes via the use of density scaling. J. Chem. Thermodyn. 116, 363–371 (2018)

    Article  Google Scholar 

  6. Galliero Guillaume, Equilibrium, interfacial and transport properties of n-alkanes: towards the simplest coarse grained molecular model. Chem. Eng. Res. Des. 92, 3031–3037 (2014)

    Article  Google Scholar 

  7. M.J. Assael, S.K. Mylona, C.A. Tsiglifisi, Reference correlation of the thermal conductivity of n-hexane from the triple point to 600 K and up to 500 MPa. J. Phys. Chem. Ref. Data 42(1), 013106-3-8 (2013)

    Article  ADS  Google Scholar 

  8. M.L. Huber, R.A. Perkins, Thermal conductivity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decane. Fluid Phase Equilib. 227, 47–55 (2005)

    Article  Google Scholar 

  9. H. Watanabe, H. Kato, Thermal conductivity and thermal diffusivity of twenty-nine liquids: alkenes, cyclic (alkanes, alkenes, alkadienes, aromatics) and deuterated hydrocarbons. J. Chem. Eng. Data 49, 809–825 (2004)

    Article  Google Scholar 

  10. H. Forsman, P. Andersson, Thermal conductivity at high pressure of solid odd-numbered n-alkanes ranging from C9H20 to C19H40. J. Chem. Phys. 80(6), 2804–2807 (1984)

    Article  ADS  Google Scholar 

  11. C. Vélez, M. Khayet, J.M. Ortiz de Zárate, Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: n-hexadecane, n-octadecane and n-eicosane. Appl. Energy 143, 383–394 (2015)

    Article  Google Scholar 

  12. H.L. Finke, M.E. Gross, G. Waddington, H.M. Huffman, Low-temperature thermal data for the nine normal paraffin hydrocarbons from octane to hexadecane. J. Am. Chem. Soc. 76, 333–341 (1954)

    Article  Google Scholar 

  13. J.F. Messerly, G.B. Guthrie, S.S. Todd, H.L. Finke, Low-temperature thermal data for n-pentane, n-heptadecane, and n-octadecane. J. Chem. Eng. Data 12, 338–346 (1967)

    Article  Google Scholar 

  14. M.J. Assael, J.H. Dymond, M. Papadaki, P.M. Patterson, Correlation and prediction of dense fluid transport coefficients. I. n-alkanes. Int. J. Thermophys. 13(2), 269–281 (1992)

    Article  ADS  Google Scholar 

  15. J.H. Dymond, A theory-based method for correlation and prediction of dense-fluid transport properties. Int. J. Thermophys. 18(2), 303–312 (1997)

    Article  ADS  Google Scholar 

  16. T.F. Sun, A.S. Teja, Correlation and prediction of the viscosity and thermal conductivity of dense fluids. J. Chem. Eng. Data 54(9), 2527–2531 (2009)

    Article  Google Scholar 

  17. M. Fujii, X. Zhang, N. Imaishi, S. Fujiwara, T. Sakamoto, Simultaneous measurements of thermal conductivity and thermal diffusivity of liquids under microgravity conditions. Int. J. Thermophys. 18(2), 327–339 (1997)

    Article  ADS  Google Scholar 

  18. J.J. Healy, J.J. de Groot, J. Kestin, The theory of the transient hot-wire method for measuring thermal conductivity. Physica 82C, 392–408 (1976)

    Google Scholar 

  19. X. Zhang, S. Fujiwara, Z. Qi, M. Fujii, Natural convection effect on transient short-hot-wire method. Int. J. Microgravity Sci. Appl. 16(2), 129–135 (1999)

    Google Scholar 

  20. X. Zhang, M. Fujii, Simultaneous measurements of the thermal conductivity and thermal diffusivity of molten salts with a transient short-hot-wire method. Int. J. Thermophys. 21(1), 71–84 (2000)

    Article  Google Scholar 

  21. X. Zhang, W. Hendro, M. Fujii, T. Tomimura, N. Imaishi, Measurements of the thermal conductivity and thermal diffusivity of polymer melts with the short-hot-wire method. Int. J. Thermophys. 23(4), 1077–1090 (2002)

    Article  Google Scholar 

  22. X. Zhang, M. Fujii, Measurements of the thermal conductivity and thermal diffusivity of polymers. Polym. Eng. Sci. 43(11), 1755–1764 (2003)

    Article  Google Scholar 

  23. H.Q. Xie, H. Gu, M. Fujii, X. Zhang, Short hot wire technique for measuring thermal conductivity and thermal diffusivity of various materials. Meas. Sci. Technol. 17, 208–214 (2006)

    Article  ADS  Google Scholar 

  24. X. Zhang, H. Gu, M. Fujii, Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. Int. J. Thermophys. 27(2), 569–580 (2006)

    Article  ADS  Google Scholar 

  25. P.L. Woodfield, J. Fukai, M. Fujii, Y. Takata, K. Shinzato, Determining thermal conductivity and thermal diffusivity of low-density gases using the transient short-hot-wire method. Int. J. Thermophys. 29, 1299–1320 (2008)

    Article  ADS  Google Scholar 

  26. P.L. Woodfield, J. Fukai, M. Fujii, Y. Takata, K. Shinzato, A two-dimensional analytical solution for the transient short-hot-wire method. Int. J. Thermophys. 29, 1278–1298 (2008)

    Article  ADS  Google Scholar 

  27. P.L. Woodfield, S. Moroe, J. Fukai, M. Fujii, K. Shinzato, M. Kohno, Y. Takata, Techniques for accurate resistance measurement in the transient short-hot-wire method applied to high thermal-diffusivity gas. Int. J. Thermophys. 30, 1748–1772 (2009)

    Article  ADS  Google Scholar 

  28. P.L. Woodfield, J. Fukai, M. Fujii, Y. Takata, An accelerated two-dimensional unsteady heat conduction calculation procedure for thermal conductivity measurement by the transient short-hot-wire method. Int. J. Thermophys. 30, 796–809 (2009)

    Article  ADS  Google Scholar 

  29. S. Moroe, P.L. Woodfield, K. Kimura, M. Kohno, J. Fukai, M. Fujii, K. Shinzato, Y. Takata, Measurements of hydrogen thermal conductivity at high pressure and high temperature. Int. J. Thermophys. 32, 1887–1917 (2011)

    Article  ADS  Google Scholar 

  30. S. Moroe, P.L. Woodfield, J. Fukai, K. Shinzato, M. Kohno, M. Fujii, Y. Takata, Thermal conductivity measurement of gases by the transient short-hot-wire method. Exp. Heat Transf. 24(2), 168–178 (2011)

    Article  ADS  Google Scholar 

  31. J.M. Ortega, W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables (Academic Press, New York, 1970)

    MATH  Google Scholar 

  32. JCGM, GUM 1995 with Minor Corrections: Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. 100, (2008)

  33. M.J. Assael, S.K. Mylona, M.L. Huber, R.A. Perkins, Reference correlation of the thermal conductivity of toluene from the triple point to 1000 K and up to 1000 MPa. J. Phys. Chem. Ref. Data 41, 023101 (2012)

    Article  ADS  Google Scholar 

  34. C. Vélez, J.M. Ortiz de Zárate, M. Khayet, Thermal properties of n-pentadecane, n-heptadecane and n-nonadecane in the solid/liquid phase change region. Int. J. Therm. Sci. 94, 139–146 (2015)

    Article  Google Scholar 

  35. Y. Wada, Y. Nagasaka, A. Nagashima, Measurements and correlation of the thermal conductivity of liquid n-paraffin hydrocarbons and their binary and ternary mixtures. Int. J. Thermophys. 6, 251–265 (1985)

    Article  ADS  Google Scholar 

  36. G.F. Bogatov, Y.L. Rastorguev, B. Grigorev, Thermal conductivity of normal hydrocarbons at high pressures and temperatures. Chem. Technol. Fuels Oils 5, 651–653 (1969)

    Article  Google Scholar 

  37. G.K. Mukhamedzyanov, A.G. Usmanov, Thermal conductivity of higher saturated hydrocarbons. Izv. Vyssh. Uchebn. Zaved. Neft Gaz 4, 76–80 (1967)

    Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the National Natural Science Foundation of China (Grant No. 51676160) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51721004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Zhao.

Ethics declarations

Conflict of interests

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Yao, C., Zhao, X. et al. Thermal Conductivity of n-Pentadecane (C15H32). Int J Thermophys 40, 72 (2019). https://doi.org/10.1007/s10765-019-2537-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2537-x

Keywords

Navigation