Skip to main content
Log in

Toward Efficient Design of Flip-flops in Quantum-Dot Cellular Automata with Power Dissipation Analysis

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) is one of the emergent nano-technologies and a potential substitute for transistor based technologies. In this research, an efficient QCA based T, SR and JK flip-flops have been proposed. The proposed gates are implemented with multiplexer, three-input Majority gate and XOR gate. The circuit layouts are designed and verified using QCADesigner version 2.0.3. The simulation result reviles the excellence of the proposed design. The proposed T flip-flop archives 35% improvement in terms cell count. Similarly, the reported RS and JK flip-flop requires 43% and 50% less area respectively in comparison to the previous best single layer design. In addition, QCAPro tool has been used to estimate the power dissipation of all considered designs at different tunneling energy level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tangmettajittakul, O., Thainoi, S., Changmoang, P., Kanjanachuchai, S., Rattanathammaphan, S., Panyakeow, S.: Extended optical properties beyond band-edge of GaAs by InAs quantum dots and quantum dot molecules. Microelectron. Eng. 87(5-8), 1304–1307 (2010)

    Article  Google Scholar 

  2. Yu, W., Zhang, B., Liu, C., Zhao, Y., Wu, W.R., Xue, Z.Y., Chen, M., Buca, D., Hartmann, J.M., Wang, X., Zhao, Q.T.: Impact of Si cap, strain and temperature on the hole mobility of (s) Si/sSiGe/(s) SOI quantum-well p-MOSFETs. Microelectron. Eng. 113, 5–9 (2014)

    Article  Google Scholar 

  3. Bose, R., Johnson, H.T.: Coulomb interaction energy in optical and quantum computing applications of self-assembled quantum dots. Microelectron. Eng. 75(1), 43–53 (2004)

    Article  Google Scholar 

  4. Smith, C.G., Gardelis, S., Rushforth, A.W., Crook, R., Cooper, J., Ritchie, D.A., Linfield, E.H., Jin, Y., Pepper, M.: Realization of quantum-dot cellular automata using semiconductor quantum dots. Superlattices Microstruct. 34 (3-6), 195–203 (2003)

    Article  ADS  Google Scholar 

  5. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–25 (1994)

    Article  ADS  Google Scholar 

  6. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)

    Article  ADS  Google Scholar 

  7. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–57 (1997)

    Article  Google Scholar 

  8. Bahar, A.N., Waheed, S.: Design and implementation of an efficient single layer five input majority voter gate in quantum-dot cellular automata. SpringerPlus 5(1), 636 (2016)

    Article  Google Scholar 

  9. Abdullah-Al-Shafi, M., Bahar, A.N.: Optimized design and performance analysis of novel comparator and full adder in nanoscale. Cogent Eng. 3(1), 1237864 (2016)

    Article  Google Scholar 

  10. Lim, L.A., Ghazali, A., Yan, S.C., Fat, C.C.: Sequential circuit design using quantum-dot cellular automata (qca). In: 2012 IEEE international conference on InCircuits and systems (ICCAS), pp. 162–167. IEEE (2012)

  11. Torabi, M.: A new architecture for T flip flop using quantum-dot cellular automata. In: 2011 3rd Asia symposium on InQuality electronic design (ASQED), pp. 296–300. IEEE (2011)

  12. Angizi, S., Moaiyeri, M.H., Farrokhi, S., Navi, K., Bagherzadeh, N.: Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess. Microsyst. 39(7), 512–20 (2015)

    Article  Google Scholar 

  13. A Vetteth, K., Walus, V.S., Dimitrov, G.A.: Quantum-dot cellular automata of flip-flops. The National Conference on Communications (NCC) (2003)

  14. Huang, J., Momenzadeh, M., Lombardi, F.: Design of sequential circuits by quantum-dot cellular automata. Microelectron. J. 38(4-5), 525–37 (2007)

    Article  Google Scholar 

  15. Jagarlamudi, H.S., Saha, M., Jagarlamudi, P.K.: Quantum dot cellular automata based effective design of combinational and sequential logical structures. World Acad. Sci. Eng. Technol. 60, 671–675 (2011)

    Google Scholar 

  16. You, Y. W., Jeon, J.C.: Implementation of QCA SR flip-flop using multilayer structure. In: Proceedings of the international workshop on future technology, pp. 118–119 (2017)

  17. Lee, J. S., Jeon, J.C.: Implementation of QCA shift register with high space efficiency based on planar structure. Int. Inf. Institute (Tokyo). Information 20(11), 8075–8082 (2017)

    Google Scholar 

  18. Abdullah-Al-Shafi, M., Bahar, A.N.: Ultra-efficient design of robust RS flip-flop in nanoscale with energy dissipation study. Cogent Eng. 4(1), 1391060 (2017)

    Google Scholar 

  19. Chakrabarty, R., Mahato, D.K., Banerjee, A., Choudhuri, S., Dey, M., Mandal, N.K.: A novel design of flip-flop circuits using quantum dot cellular automata (QCA). In: Computing and communication workshop and conference (CCWC), 2018 IEEE 8th Annual (pp. 408–414). IEEE (2018)

  20. Yang, X., Cai, L., Zhao, X., Zhang, N.: Design and simulation of sequential circuits in quantum-dot cellular automata: falling edge-triggered flip-flop and counter study. Microelectron. J. 41(1), 56–63 (2010)

    Article  Google Scholar 

  21. Pandey, S., Singh, S., Wairya, S.: Designing an efficient approach for JK and T flip-flop with power dissipation analysis using QCA. Int. J. VLSI Des. Commun. Syst. 7(3), 29–48 (2016)

    Article  Google Scholar 

  22. Abdullah-Al-Shafi, M., Bahar, A.N., Habib, M.A., Bhuiyan, M.M., Ahmad, F., Ahmad, P.Z., Ahmed, K.: Designing single layer counter in quantum-dot cellular automata with energy dissipation analysis. Ain Shams Engineering Journal (2017)

  23. Mukhopadhyay, D., Dutta, P.: A study on energy optimized 4 dot 2 electron two dimensional quantum dot cellular automata logical reversible flip-flops. Microelectron. J. 46(6), 519–530 (2015)

    Article  Google Scholar 

  24. Abdullah-Al-Shafı, M., Bahar, A.N.: Energy optimized and low complexity 2-dimensional 4 Dot 2 electron flip-flop and quasi code generator in nanoscale. J. Nanoelectron. Optoelectron. 12, 1–8 (2018)

    Google Scholar 

  25. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  ADS  Google Scholar 

  26. Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCAPro-an error-power estimation tool for QCA circuit design. In: 2011 IEEE international symposium on InCircuits and Systems (ISCAS), pp. 2377–2380. IEEE (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Newaz Bahar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahar, A.N., Laajimi, R., Abdullah-Al-Shafi, M. et al. Toward Efficient Design of Flip-flops in Quantum-Dot Cellular Automata with Power Dissipation Analysis. Int J Theor Phys 57, 3419–3428 (2018). https://doi.org/10.1007/s10773-018-3855-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3855-7

Keywords

Navigation