Skip to main content
Log in

Electrodeposited platinum catalysts over hierarchical carbon monolithic support

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Mesoporous deposits of platinum catalysts were electrodeposited over monolith carbon with hierarchical porous structure. The liquid crystal used as a template allowed the electrodeposition of the catalyst on the outer region of the carbon with low penetration in the porous structure. The platinum hexagonal mesostructured deposits exhibits an excellent stability enhanced by the roughness of the carbon support. The mass activity for the electrooxidation of methanol of the mesoporous Pt catalyst supported on the hierarchical carbon is similar to that observed on gold and to that reported for commercial Pt nanoparticulated catalysts, even when this catalyst has a smaller Pt load than the commercial one. Also, the poisoning rate of the mesoporous catalyst is lower than that observed for the commercial catalyst. The integrated system of structured materials could be suitable for the fabrication of modified electrodes in small scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PEM:

Polymer exchange membrane

HC:

Hierarchical carbon

RF:

Resorcinol formaldehyde

MC:

Mesopororous catalyst

HCMC:

Hierarchical carbon–mesopororous catalyst

ca.:

Circa

RHE:

Reversible hydrogen electrode

δ :

Poisoning rate

RMS:

Root mean square

References

  1. Larminie J, Dicks A (2003) Fuel cell system explained, 2nd edn. Wiley, Chichester, New York

    Google Scholar 

  2. Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11

    Article  CAS  Google Scholar 

  3. Walcarius A, Sibottier E, Etienne M, Ghanbaja J (2007) Nat Mater 6:602

    Article  CAS  Google Scholar 

  4. Meng Y, Gu D, Zhang F, Shi Y, Cheng L, Feng D, Wu Z, Chen Z, Wan Y, Stein A, Zhao D (2006) Chem Mater 18:4447

    Article  CAS  Google Scholar 

  5. Wan Y, Shi Y, Zhao D (2008) Chem Mater 20:932

    Article  CAS  Google Scholar 

  6. Kobayashi N, Takahashi S (2007) European Patent Application, Pat. N: EP1862217

  7. Wang HM (2008) J Power Sources 177:506

    Article  CAS  Google Scholar 

  8. Abu-Jrai A, Tsolakis A, Megaritis A (2007) Int J Hydrog Energy 32:65

    Google Scholar 

  9. Iojoiu EE, Domine ME, Davidian T, Guilhaume N, Mirodatos C (2007) Appl Catal A 323:147

    Article  CAS  Google Scholar 

  10. Zhang B, Cai W, Li Y, Xu Y, Shen W (2008) Int J Hydrog Energy 33:4377

    Article  CAS  Google Scholar 

  11. Abdelkareem MA, Nakagawa N (2006) J Power Sources 162:114

    Article  Google Scholar 

  12. Haile SM (2003) Acta Mater 51:5981

    Article  CAS  Google Scholar 

  13. Kulikovsky A, Kucernak A, Kornyshev AA (2005) Electrochim Acta 50:1323–1333

    Article  CAS  Google Scholar 

  14. Zhang J, Yin G-P, Lai Q-Z, Wang Z-B, Cai K-D, Liu P (2007) J Power Sources 168:453

    Article  CAS  Google Scholar 

  15. Cheng T, Gyenge EL (2006) Electrochim Acta 51:3904

    Article  CAS  Google Scholar 

  16. Planes GA, García G, Pastor E (2007) Electrochem Commun 9:839

    Article  CAS  Google Scholar 

  17. Glora M, Wiener M, Petricevic R, Probstle H, Fricke J (2001) J Non-Cryst Solids 285:283

    Article  CAS  Google Scholar 

  18. Du H, Li B, Kang F, Fu R, Zeng Y (2007) Carbon 45:429

    Article  CAS  Google Scholar 

  19. Meng DD, Cubaud T, Ho C-M, Kim C-J (2007) JMEMS 16:1403

    CAS  Google Scholar 

  20. Cheng TT, Gyenge EL (2008) J Appl Electrochem 38:51

    Article  CAS  Google Scholar 

  21. Wang D-W, Li F, Liu M, Lu GQ, Cheng H-M (2007) Angew Chem Int Ed 47:373

    Article  Google Scholar 

  22. Antolini E, Salgado JRC, Gonzalez ER (2006) Appl Catal B 63:137

    Article  CAS  Google Scholar 

  23. Hampson NA, Willars MJ (1979) J Power Sources 4:191

    Article  CAS  Google Scholar 

  24. Kirillov SA, Tsiakaras PE, Romanova IV (2003) J Mol Struct 651:365

    Article  Google Scholar 

  25. Duarte MME, Pilla AS, Sieben JM, Mayer CE (2006) Electrochem Commun 8:159

    Article  CAS  Google Scholar 

  26. Bruno MM, Corti HR, Barbero CA (2009) Funct Mat Lett (in press)

  27. Gavalda S, Gubbins KE, Hanzawa Y, Kaneko K, Thomson KT (2002) Langmuir 18:2141

    Article  CAS  Google Scholar 

  28. Yamamoto T, Mukai SR, Endo A, Nakaiwa M, Tamon H (2003) J Colloid Interface Sci 264:532

    Article  CAS  Google Scholar 

  29. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Pure Appl Chem 66:1739

    Article  CAS  Google Scholar 

  30. Attard GS, Bartlett PN, Coleman NRB, Elliott JM, Owen JR, Wang JH (1997) Science 278:838

    Article  CAS  Google Scholar 

  31. Jiang J, Kucernak A (2002) J Electroanal Chem 533:153

    Article  CAS  Google Scholar 

  32. Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, Shiraishi S, Kurihara H, Oya A (2003) Carbon 41:1765

    Article  Google Scholar 

  33. Bruno MM, Cotella NG, Miras MC, Barbero CA (2005) Chem Commun 5896

  34. Bruno MM (2007) Thesis, Universidad Nacional de Río Cuarto, Argentina

  35. Barbieri O, Hahn M, Herzog A, Koetz R (2005) Carbon 43:1303

    Article  CAS  Google Scholar 

  36. Frackowiak E, Béguin F (2001) Carbon 39:937

    Article  CAS  Google Scholar 

  37. Attard GS, Bartlett PN, Coleman NRB, Elliott JM, Owen JR (1998) Langmuir 14:7340

    Article  CAS  Google Scholar 

  38. Barlett PN, Gollas B, Guerin S, Marwan J (2002) Phys Chem Chem Phys 4:3835

    Article  Google Scholar 

  39. Mitchell DJ (1983) J Chem Soc Faraday Trans 1:975

    Google Scholar 

  40. Crepaldi EL, Soler-Illia GJAA, Grosso D, Cagnol F, Ribot F, Sánchez C (2003) J Am Chem Soc 125:9770

    Article  CAS  Google Scholar 

  41. Eggiman BW, Tate MP, Hillhouse HW (2006) Chem Mater 18:723

    Article  CAS  Google Scholar 

  42. Jiang J, Kucernak A (2002) J Electroanal Chem 520:64

    Article  CAS  Google Scholar 

  43. Jiang J, Kucernak A (2003) J Electroanal Chem 543:187

    Article  CAS  Google Scholar 

  44. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishing, New York

    Google Scholar 

  45. Lim D-H, Lee W-D, Choi D-H, Park D-R, Lee H-I (2008) J Power Sources 185:159

    Article  CAS  Google Scholar 

  46. Guo JW, Zhao TS, Prabhuram J, Chen R, Wong CM (2005) Electrochim Acta 51:754

    Article  CAS  Google Scholar 

  47. Teng Z-H, Wang G, Wu B, Gao Y (2007) J Power Sources 164:105

    Article  CAS  Google Scholar 

  48. Bender F, Chilcott TC, Coster HGL, Hibbert DB, Gooding JJ (2007) Electrochim Acta 52:2640

    Article  CAS  Google Scholar 

  49. Etienne M, Walcarius A (2005) Electrochem Comm 7:1449

    Article  CAS  Google Scholar 

  50. Rodríguez-Reinoso F (1998) Carbon 36:59

    Article  Google Scholar 

  51. Fraga MA, Jordão E, Mendes MJ, Freitas MMA, Faria JL, Figueiredo JL (2002) J Catal 209:355

    Article  CAS  Google Scholar 

  52. Seidel YE, Lindström RW, Jusys Z, Gustavsson M, Hanarp P, Kasemo B, Minkow A, Fecht HJ, Behm RJ (2008) J Electrochem Soc 155:K50

    Article  CAS  Google Scholar 

  53. Cheng X, Peng C, You M, Liu L, Zhang Y, Fan Q (2006) Electrochim Acta 51:4620

    Article  CAS  Google Scholar 

  54. Guo JW, Xie XF, Wang JH, Shang YM (2006) Electrochim Acta 53:3056

    Article  Google Scholar 

  55. Guo J, Sun G, Wang Q, Wang G, Zhou Z, Tang S, Jiang L, Zhou B, Xin Q (2006) Carbon 44:152

    Article  CAS  Google Scholar 

  56. Faghri A, Guo Z (2008) Appl Therm Eng 28:1614

    Article  CAS  Google Scholar 

  57. Kim SH, Cha HY, Miesse CM, Jang JH, Oh YS, Cha SW (2009) Int J Hydrog Energy 34:459

    Article  CAS  Google Scholar 

  58. Silva VS, Ruffmann B, Vetter S, Mendes A, Madeira LM, Nunes SP (2005) Catal Today 104:205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank financial support from Agencia Nacional de Promoción Científica y Tecnológica (PICT Start Up 35403), and CONICET (PIP 5977). The contributions of Dr. G. Soler Illia and the National Synchrotron Light Laboratory (LNLS, Campinas – Brazil) in the GISAXS measurement are gratefully acknowledged. GAP and HRC are permanent research fellows of CONICET. MB and EF thank to CONICET for their fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio R. Corti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, M.M., Franceschini, E.A., Planes, G.A. et al. Electrodeposited platinum catalysts over hierarchical carbon monolithic support. J Appl Electrochem 40, 257–263 (2010). https://doi.org/10.1007/s10800-009-9999-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9999-7

Keywords

Navigation