Skip to main content
Log in

Analytical solution for electrolyte concentration distribution in lithium-ion batteries

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this article, the method of separation of variables (SOV), as illustrated by Subramanian and White (J Power Sources 96:385, 2001), is applied to determine the concentration variations at any point within a three region simplified lithium-ion cell sandwich, undergoing constant current discharge. The primary objective is to obtain an analytical solution that accounts for transient diffusion inside the cell sandwich. The present work involves the application of the SOV method to each region (cathode, separator, and anode) of the lithium-ion cell. This approach can be used as the basis for developing analytical solutions for battery models of greater complexity. This is illustrated here for a case in which non-linear diffusion is considered, but will be extended to full-order nonlinear pseudo-2D models in later work. The analytical expressions are derived in terms of the relevant system parameters. The system considered for this study has LiCoO2–LiC6 battery chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a :

Specific interfacial area (m2/m3)

B, Brugg:

Bruggeman coefficient

c 0 :

Concentration at initial time t = 0

c i (x, t):

Concentration in region i (mol/m3)

C i (X, τ):

Dimensionless concentration in region i

D :

Diffusion coefficient of lithium ions in the electrolyte (cm2/s)

D eff,i :

Effective diffusion coefficient of the Li-ion in region i (cm2/s)

F :

Faraday’s constant (C/mol)

i app :

Applied current density (A/m2)

\( j_i \) :

Flux density of the Li-ions into the electrode in region i (mol/m2s)

\( J_i \) :

Dimensionless flux density in region i

\( l_i \) :

Thickness of region i (m)

\( K \) :

Ratio of dimensionless flux densities in the electrodes

\( L \) :

Total thickness of cell (m)

\( p \) :

Dimensionless position of positive electrode/separator interface

\( q \) :

Dimensionless position of separator/negative electrode interface

\( t \) :

Time (s)

\( t_+ \) :

Transference number

x :

Position (m)

X :

Dimensionless position

α n , β n :

Eigenvalues

ε i :

Porosity in region i

τ:

Dimensionless time

References

  1. Gomadam PM, Weidner JW, Dougal RA, White RE (2002) J Power Sources 110:267

    Article  CAS  Google Scholar 

  2. Doyle M, Fuller TF, Newman J (1993) J Electrochem Soc 140:1526

    Article  CAS  Google Scholar 

  3. Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon JM (1996) J Electrochem Soc 143:1890

    Article  Google Scholar 

  4. Doyle M, Newman J (1997) J Appl Electrochem 27:846

    Article  CAS  Google Scholar 

  5. Newman J, Tiedemann W (1975) AIChE J 21:25

    Article  CAS  Google Scholar 

  6. Botte GG, Subramanian VR, White RE (2000) Electrochim Acta 45:2595

    Article  CAS  Google Scholar 

  7. Arora P, Doyle M, Gozdz AS, White RE, Newman J (2000) J Power Sources 88:219

    Article  CAS  Google Scholar 

  8. Atlung S, West K, Jacobsen T (1979) J Electrochem Soc 126:1311

    Article  CAS  Google Scholar 

  9. Fuller TF, Doyle M, Newman J (1994) J Electrochem Soc 141:982

    Article  CAS  Google Scholar 

  10. Fuller TF, Doyle M, Newman J (1994) J Electrochem Soc 141:1

    Article  CAS  Google Scholar 

  11. Ning G, White RE, Popov BN (2006) Electrochim Acta 51:2012

    Article  CAS  Google Scholar 

  12. Ramadass P, Haran B, Gomadam PM, White R, Popov BN (2004) J Electrochem Soc 151:A196

    Article  CAS  Google Scholar 

  13. Ramadass P, Haran B, White R, Popov BN (2003) J Power Sources 123:230

    Article  CAS  Google Scholar 

  14. Cai L, White RE (2009) J Electrochem Soc 156:A154

    Article  CAS  Google Scholar 

  15. Cai L, White RE (2010) J Electrochem Soc 157:A1188

    Article  CAS  Google Scholar 

  16. Subramanian VR, Boovaragavan V, Ramadesigan V, Arabandi M (2009) J Electrochem Soc 156:A260

    Article  CAS  Google Scholar 

  17. Forman JC, Bashash S, Stein JL, Fathy HK (2011) J Electrochem Soc 158:A93

    Article  CAS  Google Scholar 

  18. Subramanian VR, Boovaragavan V, Diwakar VD (2007) Electrochem Solid State 10:A255

    Article  CAS  Google Scholar 

  19. Boovaragavan V, Harinipriya S, Subramanian VR (2008) J Power Sources 183:361

    Article  CAS  Google Scholar 

  20. Northrop PWC, Ramadesigan V, De S, Subramanian VR (2011) J Electrochem Soc 158:A1461

    Article  CAS  Google Scholar 

  21. Subramanian VR, White RE (2001) J Power Sources 96:385

    Article  CAS  Google Scholar 

  22. Hashim Ali SA, Hussin A, Arof AK (2002) J Fizik Malasia 23:145

    Google Scholar 

  23. Crank J (1983) The mathematics of diffusion. Oxford University Press, Oxford

    Google Scholar 

  24. Thomas KE, Newman J (2003) J Electrochem Soc 150:A176

    Article  CAS  Google Scholar 

  25. Marchant TR (2002) P Roy Soc Lond A 458:873

    Article  CAS  Google Scholar 

  26. Thornton AW, Marchant TR (2008) Chem Eng Sci 63:495

    Article  CAS  Google Scholar 

  27. Valøen LO, Reimers JN (2005) J Electrochem Soc 152:A882

    Article  Google Scholar 

  28. Carey GF, Finlayson BA (1975) Chem Eng Sci 30:587

    Article  CAS  Google Scholar 

  29. Villadsen J, Michelsen ML (1978) Solution of differential equation models by polynomial approximation. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  30. Schiesser WE (1991) The numerical method of lines: integration of partial differential equations. Academic Press, New York

    Google Scholar 

  31. http://www.maplesoft.com/Products/Maple. Accessed 21 Feb 2012

  32. Brenan KE, Campbell SL, Campbell SLV, Petzold LR (1996) Numerical solution of initial-value problems in differential-algebraic equations. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  33. Methekar RN, Ramadesigan V, Pirkle JC, Subramanian VR (2011) Comput Chem Eng 35:2227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the partial financial support of this work by the National Science Foundation (CBET-0828002, CBET-1008692, CBET-1004929), the United States government, McDonnell Academy Global Energy and Environment Partnership (MAGEEP) at Washington University in St. Louis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkat R. Subramanian.

Appendix

Appendix

The governing equations are given in dimensional form as:

$$ \varepsilon_{\text{p}} \frac{{\partial c_{1} }}{\partial t} = D_{{{\text{eff}},{\text{p}}}} \frac{{\partial^{2} c_{1} }}{{\partial x^{2} }} + a_{\text{p}} \left( {1 - t_{ + } } \right)j_{\text{p}} \quad 0 \le x \le l_{\text{p}} \, $$
(39)
$$ \varepsilon_{\text{s}} \frac{{\partial c_{2} }}{\partial t} = D_{\text{eff,s}} \frac{{\partial^{2} c_{2} }}{{\partial x^{2} }}\quad l_{\text{p}} \le x \le l_{\text{s}} { + }l_{\text{p}} \, $$
(40)
$$ \varepsilon_{\text{n}} \frac{{\partial c_{3} }}{\partial t} = D_{{{\text{eff}},{\text{n}}}} \frac{{\partial^{2} c_{3} }}{{\partial x^{2} }} + a_{n} \left( {1 - t_{ + } } \right)j_{\text{n}} \quad l_{\text{p}} + l_{\text{s}} \le x \le l_{\text{n}} + l_{\text{p}} { + }l_{\text{s}} $$
(41)

With BCs determined from continuity of concentration and mass flux given as:

$$ - D_{{{\text{eff}},{\text{p}}}} \frac{{\partial c_{1} }}{\partial x} = 0\quad {\text{at}}\;x = 0,\quad - D_{{{\text{eff}},{\text{n}}}} \frac{{\partial c_{3} }}{\partial x} = 0\quad {\text{at}}\;x{ = }l_{\text{p}} + l_{\text{s}} + l_{\text{n}} $$
(42)
$$ - D_{{{\text{eff}},{\text{p}}}} \frac{{\partial c_{1} }}{\partial x} = - D_{{{\text{eff}},{\text{s}}}} \frac{{\partial c_{2} }}{\partial x}\quad{\text{at}}\;x = l_{\text{p}} ,\quad - D_{{{\text{eff}},{\text{s}}}} \frac{{\partial c_{2} }}{\partial x} = - D_{{{\text{eff}},{\text{n}}}} \frac{{\partial c_{3} }}{\partial x}\quad {\text{at}}\;x = l_{\text{p}} + l_{\text{s}} $$
(43)
$$ c_{1} \left( {x,t} \right) = c_{2} \left( {x,t} \right)\quad{\text{at}}\;x = l_{\text{p}} ,\quad c_{2} \left( {x,t} \right) = c_{3} \left( {x,t} \right)\quad {\text{at}}\;x = l_{\text{p}} { + }l_{\text{s}} $$
(44)

With IC is given as:

$$ c_{1} \left( {x,0} \right) = c_{2} \left( {x,0} \right) = c_{3} \left( {x,0} \right) = c_{0} \left( x \right) $$
(45)

For this study, the pore wall flux in the electrode is assumed to be constant across space and time. In order to maintain a charge balance, the ionic fluxes in the positive and negative electrodes are not necessarily identical in magnitude, but scaled according to the electrode thickness and specific surface area. This leads to the following relations for the pore wall flux:

$$ j_{\text{p}} = - \frac{{i_{\text{app}} }}{{a_{\text{p}} Fl_{\text{p}} }} \, $$
(46)
$$ j_{\text{n}} = + \frac{{i_{\text{app}} }}{{a_{n} Fl_{\text{n}} }} \, $$
(47)

The diffusion coefficients at the respective electrodes are expressed in terms of the Bruggeman coefficient and porosity within each electrode.

$$ D_{{{\text{eff}},i}} = D\varepsilon_{i}^{\text{Brugg}} \quad {\text{for}}\;i = {\text{p}},{\text{s}},{\text{n}} $$
(48)

The following dimensionless variables are used in order to transform the above equations to dimensionless form and to ensure that the solution is solved in terms of the system parameters (\( l_{\text{p}} ,l_{\text{s}} ,l_{\text{n}} ,p,q,\varepsilon_{\text{p}} ,\varepsilon_{\text{s}} ,\varepsilon_{\text{n}} \)):

$$ C_{i} = \left( {\frac{{c_{i} }}{{c_{0} }} - 1} \right) /J{\text{p}}\quad {\text{for}}\;i = 1, 2, 3 $$
(49)
$$ p = \frac{{l_{\text{p}} }}{L},\quad q = \frac{{l_{\text{p}} + l_{\text{s}} }}{L} \, $$
(50)
$$ \tau = \frac{Dt}{{L^{2} }} \, $$
(51)
$$ X = \frac{x}{L} $$
(52)
$$ J_{i} = \frac{{i_{\text{app}} \left( {1 - t_{ + } } \right)L^{2} }}{{\varepsilon_{i} Dc_{0} l_{i} F}}\quad {\text{for}}\;i = {\text{p}},{\text{n}} $$
(53)
$$ K = \frac{{J_{\text{n}} }}{{J_{\text{p}} }} $$
(54)

where

$$ L = l_{\text{p}} + l_{\text{s}} + l_{\text{n}} \, $$
(55)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guduru, A., Northrop, P.W.C., Jain, S. et al. Analytical solution for electrolyte concentration distribution in lithium-ion batteries. J Appl Electrochem 42, 189–199 (2012). https://doi.org/10.1007/s10800-012-0394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0394-4

Keywords

Navigation