Skip to main content

Advertisement

Log in

Scratch resistance and electrochemical corrosion behavior of hydroxyapatite coatings on Ti6Al4V in simulated physiological media

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Using an electrochemical process, needle-like hydroxyapatite crystals with Ca/P ratio of 1.67 were synthesized on Ti6Al4V without the formation of any precursor. In vitro dissolution/precipitation process was investigated by immersion of the coated substrate into Hank’s solution up to 14 days. Physical and chemical characterizations were performed by scanning electron microscope coupled with energy dispersive X-ray spectroscopy and by X-ray diffraction. In particular, through a sequence of reactions including dissolution, precipitation, and ions exchange during immersion tests, a precipitated bone-like apatite coating homogenous and less porous was formed. Further, the corrosion behavior of the untreated and HA-coated specimens in simulated body fluid was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy. The results showed that the corrosion rates of the samples with HA layer before and after immersion tests were 72 and 80 % lower than that of the bare titanium alloy. At last, the adhesion of the HA layer was determined through the use of scratch tests. A particular tribological behavior and a strong link to the substrate were revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Leitao E, Silva RA, Barbosa MA (1997) Corros Sci 39:333

    Article  CAS  Google Scholar 

  2. Breme HJ, Helsen JA (1998) In: Helsen JA, Breme HJ (eds) Metals as biomaterials. Wiley, Chichester, pp 1–35

    Google Scholar 

  3. Elagli K, Traisnel M, Hildebrand HF (1993) Electrochim Acta 38:1769

    Article  CAS  Google Scholar 

  4. Calson SL, Rostlunt TR, Abrektsson B, Abrektsson T, Branemark PL (1986) Acta Orthop Scand 57:285

    Article  Google Scholar 

  5. Bardson DI (1990) In: William D (ed) Encyclopedia of medical and dental materials. Pergamon, Oxford, p 360

    Google Scholar 

  6. Kasemo B (1983) J Prosthet Dent 49:832

    Article  CAS  Google Scholar 

  7. Schouten C, Meijer GJ, Van den Beucken JJJP, Leeuwenburgh SCG, De Jonge LT, Wolke JGC (2010) Acta Biomater 6:2227

    Article  CAS  Google Scholar 

  8. Hallab NJ, Mikecz K, Vermes C, Skipor A, Jacobs JJ (2001) J Biomed Mater Res 56:427

    Article  CAS  Google Scholar 

  9. Shirkhanzadeh M (1992) J Mater Sci Mater Med 3:322

    Article  CAS  Google Scholar 

  10. Park JB, Lakes RS (1992) Biomaterials––an introduction. Plenum, New York, pp 75–115

    Google Scholar 

  11. Urban RM, Jacobs JJ, Gilbert JL, Galante JO (1994) J Bone Joint Surg 76A:1345

    Google Scholar 

  12. Chen CC, Huang TH, Kao CT, Ding SJ (2006) J Biomed Mater Res B Appl Biomater 78B:146

    Article  CAS  Google Scholar 

  13. Wang D, Chen C, He T, Lei T (2008) J Mater Sci Mater Med 19:2281

    Article  CAS  Google Scholar 

  14. Dinda GP, Shin J, Mazumder J (2009) Acta Biomater 5:1821

    Article  CAS  Google Scholar 

  15. Kwok CT, Wong PK, Cheng FT, Man HC (2009) Appl Surf Sci 255:6736

    Article  CAS  Google Scholar 

  16. Eliaz N, Eliyahu M (2007) J Biomed Mater Res A 80:621

    Google Scholar 

  17. Shirkhanzadeh M (1991) J Mater Sci Lett 10:1415

    Article  CAS  Google Scholar 

  18. Ban S, Maruno S (1995) Biomaterials 16:977

    Article  CAS  Google Scholar 

  19. Shirkhanzadeh M (1994) Nanostruct Mater 4:677

    Article  CAS  Google Scholar 

  20. Redpenning J, Schlessinger T, Burnham S, Lippielo L, Miyano J (1996) J Biomed Mater Res 30:287

    Article  Google Scholar 

  21. Benhayoune H, Laquerriere P, Jallot E, Perchet A, Kilian L, Balossier G et al (2002) J Mater Sci Mater Med 13:1057

    Article  CAS  Google Scholar 

  22. Gross KA, Berndt CC (1994) J Mater Sci Mater Med 5:219

    Article  CAS  Google Scholar 

  23. Sousa SR, Barbosa MA (1995) J Mater Sci Mater Med 6:818

    Article  CAS  Google Scholar 

  24. Kokubo T, Takadama H (2006) Biomaterials 27:2907

    Article  CAS  Google Scholar 

  25. ASTM Standard, G61-86, Conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility in iron-, nickel-, or cobalt-based alloys, ASTM Standards, ASTM

  26. Boukamp BA (1986) Solid State Ion 20:31

    Article  CAS  Google Scholar 

  27. Brett CMA, Brett AMO (1998) Electrochemistry: principles, methods and application. Oxford University Press, Oxford

    Google Scholar 

  28. LeGeros RZ (1994) In: Brown PW, Constantz B (eds) Hydroxyapatite and related materials. CRC, FL, pp 3–28

    Google Scholar 

  29. Vijayaraghavan TV, Benesalem A (1994) J Mater Sci Lett 13:1782

    Article  CAS  Google Scholar 

  30. Dorozhkin SV (2002) Prog Cryst Growth Charact 44:45

    Article  CAS  Google Scholar 

  31. Zhang Q, Chen J, Feng J, Cao Y, Deng C, Zhang X (2003) Biomaterials 24:4741

    Article  CAS  Google Scholar 

  32. Ma M, Ye W, Wang XX (2008) Mater Lett 62:3875

    Article  CAS  Google Scholar 

  33. Verma A (1951) Nature 167:939

    Article  CAS  Google Scholar 

  34. Ban S, Hasegawa J (2002) Biomaterials 23:2965

    Article  CAS  Google Scholar 

  35. Vasilescu C, Drob P, Vasilescu E, Demetrescu I, Ionita D, Prodana M, Drob SI (2011) Corros Sci 53:992

    Article  CAS  Google Scholar 

  36. Narayanan R, Seshadri SK (2008) Corros Sci 50:1521

    Article  CAS  Google Scholar 

  37. Zhang Z, Dunn MF, Xiao TD, Tomsia AP, Saiz E 2002 Nanostructured hydroxyapatite coatings for improved adhesion and corrosion resistance for medical implants. Nanotech & Biotech Convergence-2002, Stamford, pp. 291–296

  38. Mondragon-Cortez P, Vargas-Gutierrez G (2004) Mater Lett 58:1336

    Article  CAS  Google Scholar 

  39. Souto MR, Laz MM, Reis RL (2003) Biomaterials 24:4213

    Article  CAS  Google Scholar 

  40. Venugopalan R, Wiemer JJ, George MA, Lucas LC (2000) Biomaterials 21:1669

    Article  CAS  Google Scholar 

  41. Lavos-Valereto IC, Wolynec S, Ramires I, Guastaldi AC, Costa I (2004) J Mater Sci Mater Med 15(1):55–59

    Article  CAS  Google Scholar 

  42. Pan J, Thierry D, Leygraf C (1996) Electrochem Acta 41:1143

    Article  CAS  Google Scholar 

  43. Sabatani E, Cohen JB, Bruening M, Rubinstein I (1993) Langmuir 9:2974

    Article  CAS  Google Scholar 

  44. Chern Lin JH, Lin HJ, Ding SJ, Ju CP (2000) Mater Chem Phys 64:229

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the institute IS2 M of Mulhouse for the assistance in obtaining the DRIFT spectra presented in Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Roland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roland, T., Pelletier, H. & Krier, J. Scratch resistance and electrochemical corrosion behavior of hydroxyapatite coatings on Ti6Al4V in simulated physiological media. J Appl Electrochem 43, 53–63 (2013). https://doi.org/10.1007/s10800-012-0504-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0504-3

Keywords

Navigation