Skip to main content
Log in

Enhanced electrochemical performance from cross-linked polymeric network as binder for Li–S battery cathodes

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A sulfur cathode with enhanced electrochemical properties is prepared by a hydrogel binder owning three-dimensional polymeric network for Li–S batteries. The promising high-performance binder (Alg-Ca2+) is constructed by an in situ interconnection of alginate chains by additive divalent cation with a facile and self-assembly strategy. With the assistance of 3D network, the sulfur/activated carbon composite cathode exhibits a higher rate capability and cycling performance compared to poly(vinylidene fluoride) binder, and the capacity retention is up to 80.6 % after 200 cycles (0.5C, 1C = 1675 mA g−1). Additionally, the electrochemical impedance spectroscopy also reveals a lower electrode resistance and better kinetic characteristics with Alg-Ca2+ as a binder. The improved electrochemical behaviors are assigned to the ability of maintaining the electrode stability due to the excellent mechanical property and amorphous structure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  2. Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Chem 52:13186–13200

    Article  CAS  Google Scholar 

  3. Chen R, Zhao T, Wu F (2015) From a historic review to horizons beyond: lithium–sulphur batteries run on the wheels. Chem Commun 51:18–33

    Article  CAS  Google Scholar 

  4. Bresser D, Passerini S, Scrosati B (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries—a review. Chem Commun 49:10545–10562

    Article  CAS  Google Scholar 

  5. Xu G, Ding B, Pan J, Nie P, Shen L, Zhang X (2014) High performance lithium–sulfur batteries: advances and challenges. J Mater Chem A 2:12662–12676

    Article  CAS  Google Scholar 

  6. Li L, Ruan G, Peng Z, Yang Y, Fei H, Raji AR, Samuel EL, Tour JM (2014) Enhanced cycling stability of lithium sulfur batteries using sulfur-polyaniline-graphene nanoribbon composite cathodes. ACS Appl Mater Interfaces 6:15033–15039

    CAS  Google Scholar 

  7. Ji L, Rao M, Aloni S, Wang L, Cairns EJ, Zhang Y (2011) Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ Sci 4:5053–5059

    Article  CAS  Google Scholar 

  8. Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang YG (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133:18522–18525

    Article  CAS  Google Scholar 

  9. Zhou W, Xiao X, Cai M, Yang L (2014) Polydopamine-coated, nitrogen-doped, hollow carbon–sulfur double-layered core–shell structure for improving lithium–sulfur batteries. Nano Lett 14:5250–5256

    Article  CAS  Google Scholar 

  10. Ji X, Evers S, Black R, Nazar LF (2011) Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat Commun 2:325

    Article  Google Scholar 

  11. Seh ZW, Li W, Cha JJ, Zheng G, Yang Y, McDowell MT, Hsu PC, Cui Y (2013) Sulphur–TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun 4:1331

    Article  Google Scholar 

  12. Wei H, Ma J, Li B, Zuo Y, Xia D (2014) Enhanced cycle performance of lithium–sulfur batteries using a separator modified with a PVDF-C layer. ACS Appl Mater Interfaces 6:20276–20281

    Article  CAS  Google Scholar 

  13. Zhang SS, Tran DT, Zhang Z (2014) Poly(acrylic acid) gel as a polysulphide blocking layer for high performance lithium/sulphur battery. J Mater Chem A 2:18288–18292

    Article  CAS  Google Scholar 

  14. Wang C, Su K, Wan W, Guo H, Zhou H, Chen J, Zhang X, Huang Y (2014) High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium–sulfur batteries. J Mater Chem A 2:5018–5023

    Article  CAS  Google Scholar 

  15. Wang Z, Dong Y, Li H, Zhao Z, Wu HB, Hao C, Liu S, Qiu J, Lou XW (2014) Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun 5:5002

    Article  CAS  Google Scholar 

  16. Gu M, Lee J, Kim Y, Kim JS, Jang BY, Lee KT, Kim B-S (2014) Inhibiting the shuttle effect in lithium–sulfur batteries using a layer-by-layer assembled ion-permselective separator. RSC Adv 4:46940–46946

    Article  CAS  Google Scholar 

  17. Chou SL, Pan Y, Wang JZ, Liu HK, Dou SX (2014) Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys Chem Chem Phys 16:20347–20359

    Article  CAS  Google Scholar 

  18. Song J, Xu T, Gordin ML, Zhu P, Lv D, Jiang Y-B, Chen Y, Duan Y, Wang D (2014) Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium–sulfur batteries. Adv Funct Mater 24:1243–1250

    Article  CAS  Google Scholar 

  19. Manthiram A, Fu Y, Chung SH, Zu C, Su YS (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114:11751–11787

    Article  CAS  Google Scholar 

  20. Lacey MJ, Jeschull F, Edström K, Brandell D (2014) Porosity blocking in highly porous carbon black by PVdF binder and its implications for the li–s system. J Phys Chem C 118:25890–25898

    Article  CAS  Google Scholar 

  21. Bao W, Zhang Z, Gan Y, Wang X, Lia J (2013) Enhanced cyclability of sulfur cathodes in lithium–sulfur batteries with Na-alginate as a binder. J Energy Chem 22:790–794

    Article  CAS  Google Scholar 

  22. Sun J, Huang YQ, Wang WK, Yu ZB, Wang AB, Yuan KG (2008) Application of gelatin as a binder for the sulfur cathode in lithium–sulfur batteries. Electrochim Acta 53:7084–7088

    Article  CAS  Google Scholar 

  23. He M, Yuan LX, Zhang WX, Hu XL, Huang YH (2011) Enhanced cyclability for sulfur cathode achieved by a water-soluble binder. J Phys Chem C 115:15703–15709

    Article  CAS  Google Scholar 

  24. Wang J, Yao Z, Monroe CW, Yang J, Nuli Y (2013) Carbonyl-β-cyclodextrin as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Adv Funct Mater 23:1194–1201

    Article  CAS  Google Scholar 

  25. Zhang ZA, Zeng T, Lu H, Jia M, Li J, Lai YQ (2012) Enhanced high-temperature performances of LiFePO4 cathode with polyacrylic acid as binder. ECS Electrochem Lett 1:A74–A76

    Article  CAS  Google Scholar 

  26. Liu J, Zhang Q, Wu ZY, Wu JH, Li JT, Huang L, Sun SG (2014) A high-performance alginate hydrogel binder for the Si/C anode of a Li–ion battery. Chem Commun 50:6386–6389

    Article  CAS  Google Scholar 

  27. Zhang L, Zhang L, Chai L, Xue P, Hao W, Zheng H (2014) A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium–ion batteries. J Mater Chem A 2:19036–19045

    Article  CAS  Google Scholar 

  28. Yoon J, Oh DX, Jo C, Lee J, Hwang DS (2014) Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking. Phys Chem Chem Phys 16:25628–25635

    Article  CAS  Google Scholar 

  29. Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A major constituent of brown algae for use in high-capacity Li–ion batteries. Science 334:75–79

    Article  CAS  Google Scholar 

  30. Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K (2011) Study on polymer binders for high-capacity SiO negative electrode of Li–ion batteries. J Phys Chem C 115:13487–13495

    Article  CAS  Google Scholar 

  31. Chen S, Huang X, Sun B, Zhang J, Liu H, Wang G (2014) Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances. J Mater Chem A 2:16199–16207

    Article  CAS  Google Scholar 

  32. Wang WG, Wang X, Tian LY, Wang YL, Ye SH (2014) In situ sulfur deposition route to obtain sulfur–carbon composite cathodes for lithium–sulfur batteries. J Mater Chem A 2:4316–4323

    Article  CAS  Google Scholar 

  33. Gao M, Li C, Liu N, Chen Y, Wang W, Zhang H, Yu Z, Huang Y (2014) Inhibition on polysulfides dissolve during the discharge–charge by using fish-scale-based porous carbon for lithium–sulfur battery. Electrochim Acta 149:258–263

    Article  CAS  Google Scholar 

  34. Noh H, Song J, Park J-K, Kim H-T (2015) A new insight on capacity fading of lithium–sulfur batteries: the effect of Li2S phase structure. J Power Sources 293:329–335

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Shandong Province Natural Science Foundation of China (ZR2015PE009) is gratefully appreciated. The authors appreciate the support of the “100 Talents” program of Chinese Academy of Sciences and the Qingdao Key Laboratory of Solar Energy Utilization and Energy Storage Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongcheng Jin or Kiyoshi Kanamura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5938 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Yu, J., Yan, X. et al. Enhanced electrochemical performance from cross-linked polymeric network as binder for Li–S battery cathodes. J Appl Electrochem 46, 725–733 (2016). https://doi.org/10.1007/s10800-016-0957-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0957-x

Keywords

Navigation