Skip to main content
Log in

Simultaneous electrocatalytic hydrogenation of aldehydes and phenol over carbon-supported metals

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrocatalytic hydrogenation of furfural, benzaldehyde, and phenol was studied on carbon-supported Rh, Ru, Pd, and Cu catalysts. All metals were active for hydrogenation of the carbonyl group in furfural and benzaldehyde, but only Rh/C was active for phenol hydrogenation. The intrinsic activities for furfural and benzaldehyde conversion were Pd/C < Ru/C ≤ Rh/C < Cu/C and Ru/C < Rh/C < Pd/C < Cu/C, respectively. While the trend in furfural hydrogenation remained the same in the presence of phenol, the trend in benzaldehyde hydrogenation in the presence of phenol changed to Rh/C < Ru/C < Pd/C < Cu/C. The Faradaic efficiencies for hydrogenation of both furfural (in the 10–40% range) and benzaldehyde (in the 45–100% range) followed the trend: Cu/C < Rh/C < Ru/C < Pd/C. When phenol and an aldehyde were present in the reactant solution, phenol hydrogenation was suppressed. In contrast, enhancements in the rates of carbonyl reduction were observed for both aldehydes in presence of phenol. Such enhancements depend on both the aldehyde and the metal catalyst. The enhancing factors for hydrogenation of furfural and benzaldehyde were in the 1.5–2 and 2–4 ranges, respectively. We conclude that intermolecular interactions between adsorbed phenol and the aldehydes is a general phenomenon that can potentially enhance the rates of carbonyl hydrogenation. This work highlights co-adsorption effects that pose both challenges and advantages for electrocatalytic reduction of organic compounds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Article  CAS  Google Scholar 

  2. Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46(38):7164–7183

    Article  CAS  Google Scholar 

  3. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502

    Article  CAS  Google Scholar 

  4. Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4(1):83–99

    Article  CAS  Google Scholar 

  5. Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energy Fuels 21(3):1792–1815

    Article  CAS  Google Scholar 

  6. Wang H, Wang Y (2016) Characterization of deactivated bio-oil hydrotreating catalysts. Topics Catal 59(1):65–72

    Article  CAS  Google Scholar 

  7. Xie S, Liu XY, Xia Y (2015) Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties. Nano Res 8(1):82–96

    Article  CAS  Google Scholar 

  8. Wang H, Lee S-J, Olarte MV, Zacher AH (2016) Bio-oil stabilization by hydrogenation over reduced metal catalysts at low temperatures. ACS Sustain Chem Eng 4(10):5533–5545

    Article  CAS  Google Scholar 

  9. Lam CH, Das S, Erickson NC, Hyzer CD, Garedew M, Anderson JE, Wallington TJ, Tamor MA, Jackson JE, Saffron CM (2017) Towards sustainable hydrocarbon fuels with biomass fast pyrolysis oil and electrocatalytic upgrading. Sustain Energy Fuels 1(2): 258–266

    Article  Google Scholar 

  10. Lister TE, Diaz LA, Lilga MA, Padmaperuma AB, Lin Y, Palakkal VM, Arges CG (2018) Low-temperature electrochemical upgrading of bio-oils using polymer electrolyte membranes. Energy Fuels 32(5):5944–5950

    Article  CAS  Google Scholar 

  11. Weber RS, Holladay JE (2018) Modularized production of value-added products and fuels from distributed waste carbon-rich feedstocks. Engineering 4(3):330–335

    Article  CAS  Google Scholar 

  12. Carroll KJ, Burger T, Langenegger L, Chavez S, Hunt ST, Román-Leshkov Y, Brushett FR (2016) Electrocatalytic hydrogenation of oxygenates using earth-abundant transition-metal nanoparticles under mild conditions. ChemSusChem 9(15):1904–1910

    Article  CAS  Google Scholar 

  13. Lam CH, Lowe CB, Li Z, Longe KN, Rayburn JT, Caldwell MA, Houdek CE, Maguire JB, Saffron CM, Miller DJ, Jackson JE (2015) Electrocatalytic upgrading of model lignin monomers with earth abundant metal electrodes. Green Chem 17(1):601–609

    Article  CAS  Google Scholar 

  14. Li Z, Garedew M, Lam CH, Jackson JE, Miller DJ, Saffron CM (2012) Mild electrocatalytic hydrogenation and hydrodeoxygenation of bio-oil derived phenolic compounds using ruthenium supported on activated carbon cloth. Green Chem 14:9

    Google Scholar 

  15. Kwon Y, Schouten KJP, van der Waal JC, de Jong E, Koper MTM (2016) Electrocatalytic conversion of furanic compounds. ACS Catal 6(10):6704–6717

    Article  CAS  Google Scholar 

  16. Bondue CJ, Koper MTM (2019) A mechanistic investigation on the electrocatalytic reduction of aliphatic ketones at platinum. J Catal 369:302–311

    Article  CAS  Google Scholar 

  17. Chadderdon XH, Chadderdon DJ, Matthiesen JE, Qiu Y, Carraher JM, Tessonnier J-P, Li W (2017) Mechanisms of furfural reduction on metal electrodes: distinguishing pathways for selective hydrogenation of bioderived oxygenates. J Am Chem Soc 139:40

    Article  Google Scholar 

  18. Matthiesen JE, Carraher JM, Vasiliu M, Dixon DA, Tessonnier J-P (2016) Electrochemical conversion of muconic acid to biobased diacid monomers. ACS Sustain Chem Eng 4(6):3575–3585

    Article  CAS  Google Scholar 

  19. Matthiesen JE, Suástegui M, Wu Y, Viswanathan M, Qu Y, Cao M, Rodriguez-Quiroz N, Okerlund A, Kraus G, Raman DR, Shao Z, Tessonnier J-P (2016) Electrochemical conversion of biologically produced muconic acid: key considerations for scale-up and corresponding technoeconomic analysis. ACS Sustain Chem Eng 4(12):7098–7109

    Article  CAS  Google Scholar 

  20. Xin L, Zhang Z, Qi J, Chadderdon DJ, Qiu Y, Warsko KM, Li W (2013) Electricity storage in biofuels: selective electrocatalytic reduction of levulinic acid to valeric acid or γ-valerolactone. ChemSusChem 6(4):674–686

    Article  CAS  Google Scholar 

  21. Qiu Y, Xin L, Chadderdon DJ, Qi J, Liang C, Li W (2014) Integrated electrocatalytic processing of levulinic acid and formic acid to produce biofuel intermediate valeric acid. Green Chem 16(3):1305–1315

    Article  CAS  Google Scholar 

  22. Kwon Y, Koper MT (2013) Electrocatalytic hydrogenation and deoxygenation of glucose on solid metal electrodes. ChemSusChem 6(3):455–462

    Article  CAS  Google Scholar 

  23. Song Y, Chia SH, Sanyal U, Gutierrez OY, Lercher JA (2016) Integrated catalytic and electrocatalytic conversion of substituted phenols and diaryl ethers. J Catal 344:263–272

    Article  CAS  Google Scholar 

  24. Song Y, Gutiérrez OY, Herranz J, Lercher JA (2016) Aqueous phase electrocatalysis and thermal catalysis for the hydrogenation of phenol at mild conditions. Appl Catal B 182:236–246

    Article  CAS  Google Scholar 

  25. Sanyal U, Lopez-Ruiz J, Padmaperuma AB, Holladay J, Gutiérrez OY (2018) Electrocatalytic hydrogenation of oxygenated compounds in aqueous phase. Org Process Res Dev 22(12):1590–1598

    Article  CAS  Google Scholar 

  26. Lopez-Ruiz JA, Sanyal U, Egbert J, Gutiérrez OY, Holladay J (2018) Kinetic investigation of the sustainable electrocatalytic hydrogenation of benzaldehyde on pd/c: effect of electrolyte composition and half-cell potentials. ACS Sustain Chem Eng 6(12):16073–16085

    Article  CAS  Google Scholar 

  27. Song Y, Sanyal U, Pangotra D, Holladay JD, Camaioni DM, Gutiérrez OY, Lercher JA (2018) Hydrogenation of benzaldehyde via electrocatalysis and thermal catalysis on carbon-supported metals. J Catal 359:68–75

    Article  CAS  Google Scholar 

  28. Bramley G, Nguyen M-T, Glezakou V-A, Rousseau R, Skylaris C-K, Reconciling work functions and adsorption enthalpies for implicit solvent models: a Pt (111)/water interface case study. J Chem Theory Comput 16:2703

    Article  CAS  Google Scholar 

  29. Sievers C, Noda Y, Qi L, Albuquerque EM, Rioux RM, Scott SL (2016) Phenomena affecting catalytic reactions at solid–liquid interfaces. ACS Catal 6(12):8286–8307

    Article  CAS  Google Scholar 

  30. Akinola J, Barth I, Goldsmith BR, Singh N (2020) Adsorption energies of oxygenated aromatics and organics on rhodium and platinum in aqueous phase. ACS Catal 10(9):4929–4941

    Article  CAS  Google Scholar 

  31. Singh N, Sanyal U, Fulton JL, Gutiérrez OY, Lercher JA, Campbell CT (2019) Quantifying adsorption of organic molecules on platinum in aqueous phase by hydrogen site blocking and in situ x-ray absorption spectroscopy. ACS Catal 9(8):6869–6881

    Article  CAS  Google Scholar 

  32. Bockris JOM, Gileadi E, Müller K (1967) A molecular theory of the charge dependence of competitive adsorption. Electrochim Acta 12(9):1301–1321

    Article  CAS  Google Scholar 

  33. Gileadi E, Electrosorption of uncharged molecules on solid electrodes. J Electroanal Chem 11(2):137–151

    Google Scholar 

  34. Egbert JD, Lopez-Ruiz JA, Prodinger S, Holladay JD, Mans DM, Wade CE, Weber RS (2018) Counting surface redox sites in carbon-supported electrocatalysts by cathodic stripping of O deposited from N2O. J Catal 365:405–410

    Article  CAS  Google Scholar 

  35. Ertl G, Knözinger H, Schüth F, Weitkamp J (2009) Handbook of heterogeneous catalysis, 2nd edn. Wiley, New York

    Google Scholar 

  36. Jung S, Biddinger EJ (2016) Electrocatalytic hydrogenation and hydrogenolysis of furfural and the impact of homogeneous side reactions of furanic compounds in acidic electrolytes. ACS Sustain Chem Eng 4(12):6500–6508

    Article  CAS  Google Scholar 

  37. May AS, Biddinger EJ (2020) Strategies to control electrochemical hydrogenation and hydrogenolysis of furfural and minimize undesired side reactions. ACS Catal 10(5):3212–3221

    Article  CAS  Google Scholar 

  38. Jung S, Biddinger EJ (2018) Controlling competitive side reactions in the electrochemical upgrading of furfural to biofuel. Energy Technol 6(7):1–11

    Article  Google Scholar 

  39. Singh N, Sanyal U, Ruehl G, Stoerzinger KA, Gutiérrez OY, Camaioni DM, Fulton JL, Lercher JA, Campbell CT (2020) Aqueous phase catalytic and electrocatalytic hydrogenation of phenol and benzaldehyde over platinum group metals. J Catal 382:372–384

    Article  CAS  Google Scholar 

  40. Sanyal U, Yuk SF, Koh K, Lee M-S, Stoerzinger K, Zhang D, Meyer LC, Lopez-Ruiz JA, Karkamkar A, Holladay JD, Camaioni DM, Nguyen M-T, Glezakou V-A, Rousseau R, Gutiérrez OY, Lercher J (2020) Hydrogen bonding enhances the electrochemical hydrogenation of benzaldehyde in the aqueous phase. Angew Chem Int Ed https://doi.org/10.1002/anie.202008178

    Article  Google Scholar 

Download references

Acknowledgements

The research described in this paper is part of the Chemical Transformation Initiative at Pacific Northwest National Laboratory (PNNL), conducted under PNNL’s Laboratory Directed Research and Development Program. The authors acknowledge helpful discussions with Juan A. Lopez-Ruiz, Jamie D. Holladay, Donald M. Camaioni, and Johannes A. Lercher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Y. Gutiérrez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 795 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanyal, U., Koh, K., Meyer, L.C. et al. Simultaneous electrocatalytic hydrogenation of aldehydes and phenol over carbon-supported metals. J Appl Electrochem 51, 27–36 (2021). https://doi.org/10.1007/s10800-020-01464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01464-7

Keywords

Navigation