Skip to main content
Log in

Electroseparation of zinc(II) from uranium(III) prepared by reduction of uranium(IV) with zinc amalgam in dimethylformamide

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The Electroseparation of zinc(II) from a solution of uranium(III) generated by the reduction of uranium(IV) triflate (U(OTf)4) with zinc amalgam (Zn(Hg)) was studied to establish a convenient route to the precursors of organic uranium(III) compounds. Specifically, the electrode reactions of U(OTf)4 in N,N-dimethylformamide on mercury (Hg) and Zn(Hg) electrodes were probed by voltammetry and bulk electrolysis measurements. The voltammograms recorded on the former electrode showed three cathodic waves assigned to the reduction of a uranium(IV) solvate complex (− 1.48 V), the reduction of [U(OTf)]3+ (− 1.81 V), and uranium amalgamation (− 2.65 V). On the latter electrode, the first cathodic wave was masked, as it was located at the potential of zinc amalgamation. Bulk electrolysis experiments revealed that for both Hg and Zn(Hg), the working electrode potential featured a plateau around − 2.3 V, which was not observed in the corresponding voltammograms and was related to the degradation of uranium(III) based on spectroscopic observations. The Electroseparation of zinc(II) from the uranium(III) solution on Zn(Hg) was successfully (highest coulombic efficiency = 0.81, final zinc(II) separation ratio = 93.4%) carried out after the reduction of U(OTf)4 by Zn(Hg).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ephritikhine M (2006) The vitality of uranium molecular chemistry at the dawn of the XXIst century. Dalton Trans 21:2501–2516. https://doi.org/10.1039/b603463b

    Article  CAS  Google Scholar 

  2. Korobkov I, Gorelsky S, Gambarotta S (2009) Reduced uranium complexes: synthetic and DFT study of the role of pi ligation in the stabilization of uranium species in a formal low-valent state. J Am Chem Soc 131(30):10406–10420. https://doi.org/10.1021/ja9002525

    Article  CAS  PubMed  Google Scholar 

  3. Antunes MA, Pereira LC, Santos IC, Mazzanti M, Marcalo J, Almeida M (2011) [U(Tp(Me2))2(bipy)]+: a cationic uranium(III) complex with single-molecule-magnet behavior. Inorg Chem 50(20):9915–9917. https://doi.org/10.1021/ic200705p

    Article  CAS  PubMed  Google Scholar 

  4. Mansell SM, Kaltsoyannis N, Arnold PL (2011) Small molecule activation by uranium tris(aryloxides): experimental and computational studies of binding of N2, coupling of CO, and deoxygenation insertion of CO2 under ambient conditions. J Am Chem Soc 133(23):9036–9051. https://doi.org/10.1021/ja2019492

    Article  CAS  PubMed  Google Scholar 

  5. Hohloch S, Garner ME, Parker BF, Arnold J (2017) New supporting ligands in actinide chemistry: tetramethyltetraazaannulene complexes with thorium and uranium. Dalton Trans 46(40):13768–13782. https://doi.org/10.1039/c7dt02682j

    Article  CAS  PubMed  Google Scholar 

  6. Boreen MA, Arnold J (2020) The synthesis and versatile reducing power of low-valent uranium complexes. Dalton Trans 49(43):15124–15138. https://doi.org/10.1039/d0dt03151h

    Article  CAS  PubMed  Google Scholar 

  7. Boreen MA, Gould CA, Booth CH, Hohloch S, Arnold J (2020) Structure and magnetism of a tetrahedral uranium(iii) beta-diketiminate complex. Dalton Trans 49(23):7938–7944. https://doi.org/10.1039/d0dt01599g

    Article  CAS  PubMed  Google Scholar 

  8. Riedhammer J, Aguilar-Calderon JR, Miehlich M, Halter DP, Munz D, Heinemann FW, Fortier S, Meyer K, Mindiola DJ (2020) Werner-type complexes of uranium(III) and (IV). Inorg Chem 59(4):2443–2449. https://doi.org/10.1021/acs.inorgchem.9b03229

    Article  CAS  PubMed  Google Scholar 

  9. Clark DL, Sattelberger AP, Bott SG, Vrtis RN (1989) Lewis base adducts of uranium triiodide: a new class of synthetically useful precursors for trivalent uranium chemistry. Inorg Chem 28(10):1771–1773. https://doi.org/10.1021/ic00309a004

    Article  CAS  Google Scholar 

  10. Drożdżyński J (2005) Tervalent uranium compounds. Coord Chem Rev 249(21):2351–2373. https://doi.org/10.1016/j.ccr.2005.05.016

    Article  CAS  Google Scholar 

  11. Carmichael CD, Jones NA, Arnold PL (2008) Low-valent uranium iodides: straightforward solution syntheses of UI3 and UI4 etherates. Inorg Chem 47(19):8577–8579. https://doi.org/10.1021/ic801138e

    Article  CAS  PubMed  Google Scholar 

  12. Fetrow TV, Grabow JP, Leddy J, Daly SR (2021) Convenient syntheses of trivalent uranium halide starting materials without uranium metal. Inorg Chem 60(11):7593–7601. https://doi.org/10.1021/acs.inorgchem.1c00598

    Article  CAS  PubMed  Google Scholar 

  13. Avens LR, Bott SG, Clark DL, Sattelberger AP, Watkin JG, Zwick BD (1994) A convenient entry into trivalent actinide chemistry: synthesis and characterization of AnI3(THF)4 and An[N(SiMe3)2]3 (An = U, Np, Pu). Inorg Chem 33(10):2248–2256. https://doi.org/10.1021/ic00088a030

    Article  CAS  Google Scholar 

  14. Evans WJ, Kozimor SA, Ziller JW, Fagin AA, Bochkarev MN (2005) Facile syntheses of unsolvated UI3 and tetramethylcyclopentadienyl uranium halides. Inorg Chem 44(11):3993–4000. https://doi.org/10.1021/ic0482685

    Article  CAS  PubMed  Google Scholar 

  15. Monreal MJ, Thomson RK, Cantat T, Travia NE, Scott BL, Kiplinger JL (2011) UI4(1,4-dioxane)2, [UCl4(1,4-dioxane)]2, and UI3(1,4-dioxane)1.5: stable and versatile starting materials for low- and high-valent uranium chemistry. Organometallics 30(7):2031–2038. https://doi.org/10.1021/om200093q

    Article  CAS  Google Scholar 

  16. Schleid T, Meyer G, Morss LR (1987) Facile synthesis of UCl4 and ThCl4, metallothermic reductions of UCl4 with alkali metals and crystal structure refinements of UCl3, UCl4 and Cs2UCl6. J Less Common Met 132(1):69–77. https://doi.org/10.1016/0022-5088(87)90175-5

    Article  CAS  Google Scholar 

  17. La Pierre HS, Heinemann FW, Meyer K (2014) Well-defined molecular uranium(III) chloride complexes. Chem Commun (Camb) 50(30):3962–3964. https://doi.org/10.1039/c3cc49452g

    Article  CAS  Google Scholar 

  18. Bullock JI, Storey AE (1977) Complexes of uranium(III) with bidentate amides. J Chem Soc Chem Commun. https://doi.org/10.1039/c39770000507

    Article  Google Scholar 

  19. Moody DC, Odom JD (1979) The chemistry of trivalent uranium: the synthesis and reaction chemistry of the tetrahydrofuran adduct of uranium trichloride, UCl3(THF)x. J Inorg Nucl Chem 41(4):533–535. https://doi.org/10.1016/0022-1902(79)80439-X

    Article  CAS  Google Scholar 

  20. Moody DC, Zozulin AJ, Salazar KV (1982) Improved synthesis of UCl3(THF)x and the preparation of 15-crown-5 derivatives of trivalent uranium. Inorg Chem 21(10):3856–3857. https://doi.org/10.1021/ic00140a055

    Article  CAS  Google Scholar 

  21. Rossetto G, Zanella P, Paolucci G, De Paoli G (1982) The reduction of uranium tetracloride by lithium tetrahydroaluminate in tetrahydrofuran or dimethoxyethane. Inorg Chim Acta 61:39–42. https://doi.org/10.1016/S0020-1693(00)89116-1

    Article  CAS  Google Scholar 

  22. Berthet J-C, Lance M, Nierlich M, Vigner J, Ephritikhine M (1991) Tricyclopentadienyluranium azide complexes. J Organomet Chem 420(2):C9–C11. https://doi.org/10.1016/0022-328x(91)80271-k

    Article  CAS  Google Scholar 

  23. Hauchard D, Cassir M, Chivot J, Ephritikhine M (1991) Electrochemical study of uranium(IV) and uranium(IV) organometallic compounds in tetrahydrofuran by means of conventional microelectrodes and ultramicroelectrodes. J Electroanal Chem Interfacial Electrochem 313(1–2):227–241. https://doi.org/10.1016/0022-0728(91)85182-o

    Article  CAS  Google Scholar 

  24. Mech A, Karbowiak M, Lis T, Drożdżyński J (2006) Monomeric, dimeric and polymeric structure of the uranium trichloride hydrates. Polyhedron 25(10):2083–2092. https://doi.org/10.1016/j.poly.2006.01.004

    Article  CAS  Google Scholar 

  25. Daly SR, Girolami GS (2010) Synthesis, characterization, and structures of uranium(III) N,N-dimethylaminodiboranates. Inorg Chem 49(11):5157–5166. https://doi.org/10.1021/ic100290j

    Article  CAS  PubMed  Google Scholar 

  26. Hart FA, Tajik M (1983) Complexes of uranium(III) with cyclic polyethers and with aromatic diamines. Inorg Chim Acta 71:169–173. https://doi.org/10.1016/s0020-1693(00)83655-5

    Article  CAS  Google Scholar 

  27. Kennedy JH (1960) Determination of uranium(IV) by reduction to uranium(III) in Jones reductor. Anal Chem 32(2):150–152. https://doi.org/10.1021/ac60158a002

    Article  CAS  Google Scholar 

  28. Satô A (1967) Studies of the behavior of trivalent uranium in an aqueous solution. I. Its reduction and its stability in various acid solutions. Bull Chem Soc Jpn 40(9):2107–2110. https://doi.org/10.1246/bcsj.40.2107

    Article  Google Scholar 

  29. Drocżdżyński J (1978) Absorption spectra of uranium(+ 3) in solution. J Inorg Nucl Chem 40(2):319–323. https://doi.org/10.1016/0022-1902(78)80131-6

    Article  Google Scholar 

  30. Drożdżyński J (1984) Spectroscopic investigations of some uranium(III) complexes. J Mol Struct 114:449–454. https://doi.org/10.1016/0022-2860(84)87184-7

    Article  Google Scholar 

  31. Yamamura T, Shirasaki K, Shiokawa Y (2006) Preparation of uranium(III) triflate in tetrahydrofuran by reduction of U(OTf)4 with zinc amalgam. J Phys Soc Jpn 75(Suppl):149–151. https://doi.org/10.1143/jpsjs.75s.149

    Article  Google Scholar 

  32. Shen M, Li B, Li SZ, Yu JG (2011) Electrochemical removal of AlCl3 from LiCl-KCl Melts. Metall Mater Trans A 43(5):1662–1669. https://doi.org/10.1007/s11661-011-0982-7

    Article  CAS  Google Scholar 

  33. Shen M, Li B, Yu J (2012) Investigation on electrochemical removal of CaCl2 from LiCl–KCl melts. Electrochim Acta 62:153–157. https://doi.org/10.1016/j.electacta.2011.12.007

    Article  CAS  Google Scholar 

  34. Liu K, Liu Y-L, Chai Z-F, Shi W-Q (2021) Electroseparation of uranium from lanthanides (La, Ce, Pr, Nd and Sm) on liquid gallium electrode. Sep Purif Technol 265:118524. https://doi.org/10.1016/j.seppur.2021.118524

    Article  CAS  Google Scholar 

  35. Chen GZ, Fray DJ (2001) Cathodic refining in molten salts: removal of oxygen, sulfur and selenium from static and flowing molten copper. J Appl Electrochem 31(2):155–164. https://doi.org/10.1023/A:1004175605236

    Article  CAS  Google Scholar 

  36. Zhao X, Liu H, Li A, Shen Y, Qu J (2012) Bromate removal by electrochemical reduction at boron-doped diamond electrode. Electrochim Acta 62:181–184. https://doi.org/10.1016/j.electacta.2011.12.013

    Article  CAS  Google Scholar 

  37. Giridhar P, Venkatesan KA, Subramaniam S, Srinivasan TG, Vasudeva Rao PR (2008) Extraction of uranium (VI) by 1.1 M tri-n-butylphosphate/ionic liquid and the feasibility of recovery by direct electrodeposition from organic phase. J Alloy Compd 448(1–2):104–108. https://doi.org/10.1016/j.jallcom.2007.03.115

    Article  CAS  Google Scholar 

  38. Jagadeeswara Rao C, Venkatesan KA, Nagarajan K, Srinivasan TG, Vasudeva Rao PR (2011) Electrodeposition of metallic uranium at near ambient conditions from room temperature ionic liquid. J Nucl Mater 408(1):25–29. https://doi.org/10.1016/j.jnucmat.2010.10.022

    Article  CAS  Google Scholar 

  39. Ohashi Y, Harada M, Asanuma N, Ikeda Y (2015) Feasibility studies on electrochemical recovery of uranium from solid wastes contaminated with uranium using 1-butyl-3-methylimidazorium chloride as an electrolyte. J Nucl Mater 464:119–127. https://doi.org/10.1016/j.jnucmat.2015.04.024

    Article  CAS  Google Scholar 

  40. Krishna GM, Suneesh AS, Venkatesan KA, Antony MP (2016) Electrochemical interference of some fission products during the electrodeposition of uranium oxide from 1-butyl-3-methylimidazolium chloride ionic liquid. J Electroanal Chem 780:225–232. https://doi.org/10.1016/j.jelechem.2016.09.035

    Article  CAS  Google Scholar 

  41. Sakamura Y, Omori T, Inoue T (2017) Application of electrochemical reduction to produce metal fuel material from actinide oxides. Nucl Technol 162(2):169–178. https://doi.org/10.13182/nt162-169

    Article  Google Scholar 

  42. Herrmann SD, Li SX (2017) Separation and recovery of uranium metal from spent light water reactor fuel via electrolytic reduction and electrorefining. Nucl Technol 171(3):247–265. https://doi.org/10.13182/nt171-247

    Article  Google Scholar 

  43. Behr B, Taraszewska J, Stroka J (1975) Kinetics of Zn2+ reduction at a Hg electrode from water-acetone and water-methanol mixtures. J Electroanal Chem Interfacial Electrochem 58(1):71–80. https://doi.org/10.1016/s0022-0728(75)80346-9

    Article  CAS  Google Scholar 

  44. Andreu R, Sluyters-Rehbach M, Remijnse AG, Sluyters JH (1982) The mechanism of the reduction of Zn(II) from NaClO4 base electrolyte solutions at the DME. J Electroanal Chem Interfacial Electrochem 134(1):101–115. https://doi.org/10.1016/s0022-0728(82)85030-4

    Article  CAS  Google Scholar 

  45. Taraszewska J, WaŁȩga A (1986) Medium effect: kinetics of Zn2+ reduction at the Hg electrode from water + dimethylformamide mixtures. J Electroanal Chem Interfacial Electrochem 200(1–2):261–277. https://doi.org/10.1016/0022-0728(86)90060-4

    Article  CAS  Google Scholar 

  46. Michlmayr M, Gritzner G, Gutmann V (1966) Polarographic studies on uranium compounds in dimethylformamide and dimethylsulfoxide. Inorg Nuclear Chem Lett 2(8):227–231. https://doi.org/10.1016/0020-1650(66)80033-8

    Article  CAS  Google Scholar 

  47. Shirasaki K, Yamamura T, Herai T, Shiokawa Y (2006) Electrodeposition of uranium in dimethyl sulfoxide and its inhibition by acetylacetone as studied by EQCM. J Alloy Compd 418(1–2):217–221. https://doi.org/10.1016/j.jallcom.2005.10.059

    Article  CAS  Google Scholar 

  48. Shirasaki K, Yamamura T, Monden Y, Shiokawa Y (2006) Electrolytic reduction of U(IV) salts to U(III) in N,N-dimethylformamide: effects of electrode materials and counter anions. J Phys Soc Jpn 75(Suppl):152–154. https://doi.org/10.1143/jpsjs.75s.152

    Article  Google Scholar 

  49. Izutsu K (2002) Redox Reactions in Non-Aqueous Solvents. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

Download references

Acknowledgements

The author would like to express great acknowledgements to Prof. Tomoo Yamamura (Inst. for Integrated Radiation and Nuclear Science, Kyoto Univ.) and late associate Prof. Isamu Satoh for their kind encouragements and supports. This work was partly supported by JSPS KAKENHI [Grant No. 19760607].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Shirasaki.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1044.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirasaki, K. Electroseparation of zinc(II) from uranium(III) prepared by reduction of uranium(IV) with zinc amalgam in dimethylformamide. J Appl Electrochem 52, 1101–1108 (2022). https://doi.org/10.1007/s10800-022-01698-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01698-7

Keywords

Navigation