Skip to main content
Log in

A Randomised-Controlled Trial of Vitamin D and Omega-3 Long Chain Polyunsaturated Fatty Acids in the Treatment of Core Symptoms of Autism Spectrum Disorder in Children

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

We evaluated the efficacy of vitamin D (VID), omega-3 long chain polyunsaturated fatty acids (omega-3 LCPUFA, OM), or both (VIDOM) on core symptoms of ASD. New Zealand children with ASD (n = 73; aged 2.5–8.0 years) received daily 2000 IU vitamin D3, 722 mg docosahexaenoic acid, both, or placebo. Outcome measures were Social Responsiveness Scale (SRS) and Sensory Processing Measure (SPM). Of 42 outcome measures comparisons (interventions vs. placebo), two showed greater improvements (P = 0.03, OM and VIDOM for SRS-social awareness) and four showed trends for greater improvements (P < 0.1, VIDOM for SRS-social communicative functioning, OM for SRS-total, VIDOM for SPM-taste/smell and OM for SPM-balance/motion). Omega-3 LCPUFA with and without vitamin D may improve some core symptoms of ASD but no definitive conclusions can be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Haidar, F. A. (2008). Parental attitudes toward the prescription of psychotropic medications for their children. Journal of Family & Community Medicine, 15(1), 35–42.

    Google Scholar 

  • Allaire, J., Harris, W. S., Vors, C., Charest, A., Marin, J., Jackson, K. H., & Lamarche, B. (2017). Supplementation with high-dose docosahexaenoic acid increases the Omega-3 Index more than high-dose eicosapentaenoic acid. Prostaglandins, Leukotrienes and Essential Fatty Acids, 120, 8–14. https://doi.org/10.1016/j.plefa.2017.03.008.

    Article  Google Scholar 

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, D.C.: American Psychiatric Association

    Book  Google Scholar 

  • Amminger, G. P., Berger, G. E., Schafer, M. R., Klier, C., Friedrich, M. H., & Feucht, M. (2007). Omega-3 fatty acids supplementation in children with autism: A double-blind randomized, placebo-controlled pilot study. Biological Psychiatry, 61(4), 551–553. https://doi.org/10.1016/j.biopsych.2006.05.007.

    Article  PubMed  Google Scholar 

  • Azzam, H. M. E., Sayyah, H., Youssef, S., Lotfy, H., Abdelhamid, I. A., Elhamed, A., & Maher, S. (2015). Autism and vitamin D: An intervention study. Middle East Current Psychiatry, 22(1), 9–14. https://doi.org/10.1097/01.xme.0000457269.05570.78.

    Article  Google Scholar 

  • Bandini, L. G., Anderson, S. E., Curtin, C., Cermak, S., Evans, E. W., Scampini, R., & Must, A. (2010). Food selectivity in children with autism spectrum disorders and typically developing children. Journal of Pediatrics, 157(2), 259–264. https://doi.org/10.1016/j.jpeds.2010.02.013.

    Article  PubMed  Google Scholar 

  • Bender, B. G., Ellison, M. C., Gleason, M., Murphy, J. R., Sundstrom, D. A., & Szefler, S. J. (2003). Minimizing attrition in a long-term clinical trial of pediatric asthma. Annals of Allergy Asthma and Immunology, 91(2), 168–176. https://doi.org/10.1016/s1081-1206(10)62173-4.

    Article  Google Scholar 

  • Bent, S., Bertoglio, K., Ashwood, P., Bostrom, A., & Hendren, R. L. (2011). A pilot randomized controlled trial of omega-3 fatty acids for autism spectrum disorder. Journal of Autism and Devevlopmental Disorder, 41(5), 545–554. https://doi.org/10.1007/s10803-010-1078-8.

    Article  Google Scholar 

  • Bent, S., Hendren, R. L., Zandi, T., Law, K., Choi, J. E., Widjaja, F., & Law, P. (2014). Internet-based, randomized controlled trial of omega-3 fatty acids for hyperactivity in autism. Journal of the American Academy of Child and Adolescent Psychiatry, 53(6), 658–666. https://doi.org/10.1016/j.jaac.2014.01.018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolte, S., Poustka, F., & Constantino, J. N. (2008). Assessing autistic traits: cross-cultural validation of the social responsiveness scale (SRS). Autism Research, 1(6), 354–363. https://doi.org/10.1002/aur.49.

    Article  PubMed  Google Scholar 

  • Boone, K. M., Gracious, B., Klebanoff, M. A., Rogers, L. K., Rausch, J., Coury, D. L., & Keim, S. A. (2017). Omega-3 and -6 fatty acid supplementation and sensory processing in toddlers with ASD symptomology born preterm: A randomized controlled trial. Early Human Development, 115, 64–70. https://doi.org/10.1016/j.earlhumdev.2017.09.015.

    Article  PubMed  Google Scholar 

  • Brown, T., Morrison, I. C., & Stagnitti, K. (2010). The reliability of two sensory processing scales used with school-age children: Comparing the response consistency of mothers, fathers, and classroom teachers rating the same child. Journal of Occupational Therapy, Schools, & Early Intervention, 3(4), 331–347. https://doi.org/10.1080/19411243.2010.541775.

    Article  Google Scholar 

  • Brown, T., & Subel, C. (2013). Known-group validity of the infant toddler sensory profile and the sensory processing measure-preschool. Journal of Occupational Therapy, Schools, & Early Intervention, 6(1), 54–72. https://doi.org/10.1080/19411243.2013.771101.

    Article  Google Scholar 

  • Cass, W. A., Smith, M. P., & Peters, L. E. (2006). Calcitriol protects against the dopamine- and serotonin-depleting effects of neurotoxic doses of methamphetamine. Annals of New York Academy of Sciences, 1074, 261–271. https://doi.org/10.1196/annals.1369.023.

    Article  Google Scholar 

  • Cheng, Y. S., Tseng, P. T., Chen, Y. W., Stubbs, B., Yang, W.-C., Chen, T. Y., & Lin, P. Y. (2017). Supplementation of omega 3 fatty acids may improve hyperactivity, lethargy, and stereotypy in children with autism spectrum disorders: A meta-analysis of randomized controlled trials. Neuropsychiatric Disease and Treatment, 13, 2531–2543. https://doi.org/10.2147/NDT.S147305.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cholemkery, H., Kitzerow, J., Rohrmann, S., & Freitag, C. (2014). Validity of the social responsiveness scale to differentiate between autism spectrum disorders and disruptive behaviour disorders. European Child and Adolescent Psychiatry, 23(2), 81–93. https://doi.org/10.1007/s00787-013-0427-5.

    Article  PubMed  Google Scholar 

  • Constantino, J., & Gruber, C. (2012). The social responsiveness scale, Second Edition (SRS-2). Los Angeles: Western Psychological Services.

    Google Scholar 

  • Dugas, C., Simard, M.-N., Fombonne, E., & Couture, M. (2017). Comparison of two tools to assess sensory features in children with autism spectrum disorder. American Journal of Occupational Therapy, 72(1), 1–9. https://doi.org/10.5014/ajot.2018.024604.

    Article  Google Scholar 

  • Emond, A., Emmett, P., Steer, C., & Golding, J. (2010). Feeding symptoms, dietary patterns, and growth in young children with autism spectrum disorders. Pediatrics, 126(2), e337–e342. https://doi.org/10.1542/peds.2009-2391.

    Article  PubMed  Google Scholar 

  • Enko, D., Fridrich, L., Rezanka, E., Stolba, R., Ernst, J., Wendler, I., & Halwachs-Baumann, G. (2014). 25-Hydroxy-vitamin D status: Limitations in comparison and clinical interpretation of serum-levels across different assay methods. Clinica y Laboratorio, 60(9), 1541–1550. https://doi.org/10.7754/Clin.Lab.2014.131114.

    Article  Google Scholar 

  • Fedorova, I., Alvheim, A. R., Hussein, N., & Salem, N. Jr.. (2009). Deficit in prepulse inhibition in mice caused by dietary n–3 fatty acid deficiency. Behavioral Neuroscience. 123(6), 1218–1225. https://doi.org/10.1037/a0017446.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng, J., Shan, L., Du, L., Wang, B., Li, H., Wang, W., & Jia, F. (2017). Clinical improvement following vitamin D3 supplementation in autism spectrum disorder. Nutritional Neuroscience, 20(5), 284–290. https://doi.org/10.1080/1028415x.2015.1123847.

    Article  PubMed  Google Scholar 

  • Flock, M. R., Skulas-Ray, A. C., Harris, W. S., Etherton, T. D., Fleming, J. A., & Kris-Etherton, P. M. (2013). Determinants of erythrocyte omega-3 fatty acid content in response to fish oil supplementation: A dose-response randomized controlled trial. Journal of American Heart Association, 2(6), e000513. https://doi.org/10.1161/jaha.113.000513.

    Article  Google Scholar 

  • Fortunato, J. J., da Rosa, N., Laurentino, M., Goulart, A. O., Michalak, M., Borges, C., & Petronilho, F. (2017). Effects of ω-3 fatty acids on stereotypical behavior and social interactions in Wistar rats prenatally exposed to lipopolysaccarides. Nutrition, 35, 119–127. https://doi.org/10.1016/j.nut.2016.10.019.

    Article  PubMed  Google Scholar 

  • Fox, N., Hunn, A., & Mather, N. (1998). Sampling. Trent Focus for Research and Development in Primary Health Care.

  • Graf-Myles, J., Farmer, C., Thurm, A., Royster, C., Kahn, P., Soskey, L., & Swedo, S. (2013). Dietary adequacy of children with autism compared with controls and the impact of restricted diet. Journal of Developmental and Behavioral Pediatrics, 34(7), 449–459. https://doi.org/10.1097/DBP.0b013e3182a00d17.

    Article  PubMed  Google Scholar 

  • Harris, W. S., & Von Schacky, C. (2004). The Omega-3 Index: A new risk factor for death from coronary heart disease? Preventive Medicine, 39(1), 212–220. https://doi.org/10.1016/j.ypmed.2004.02.030.

    Article  PubMed  Google Scholar 

  • Hendren, R. L. (2013). Autism: biomedical complementary treatment approaches. Child and Adolescent Psychiatry Clinics of North America, 22(3), 443–456. https://doi.org/10.1016/j.chc.2013.03.002. vi.

    Article  Google Scholar 

  • Hertz-Picciotto, I., Green, P. G., Delwiche, L., Hansen, R., Walker, C., & Pessah, I. N. (2010). Blood mercury concentrations in CHARGE Study children with and without autism. Environmental Health Perspectives, 118(1), 161–166. https://doi.org/10.1289/ehp.0900736.

    Article  PubMed  Google Scholar 

  • Holick, M. F., Binkley, N. C., Bischoff-Ferrari, H. A., Gordon, C. M., Hanley, D. A., Heaney, R. P., & Weaver, C. M. (2011). Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. The Journal of Clinical Endocrinology & Metabolism, 96(7), 1911–1930. https://doi.org/10.1210/jc.2011-0385.

    Article  Google Scholar 

  • Horvath, A., Lukasik, J., & Szajewska, H. (2017). Omega-3 fatty acid supplementation does not affect autism spectrum disorder in children: A systematic review and meta-analysis. Journal of Nutrition, 147(3), 367–376. https://doi.org/10.3945/jn.116.242354.

    Article  PubMed  Google Scholar 

  • Humble, M. B., Gustafsson, S., & Bejerot, S. (2010). Low serum levels of 25-hydroxyvitamin D (25-OHD) among psychiatric out-patients in Sweden: relations with season, age, ethnic origin and psychiatric diagnosis. Journal of Steroid Biochemistry and Molecular Biology, 121(1–2), 467–470. https://doi.org/10.1016/j.jsbmb.2010.03.013.

    Article  PubMed  Google Scholar 

  • Institute of Medicine. (2011). Dietary reference intakes for calcium and vitamin D. Washington, DC, USA: The National Academies Press.

    Google Scholar 

  • Jia, F., Wang, B., Shan, L., Xu, Z., Staal, W. G., & Du, L. (2015). Core symptoms of autism improved after vitamin D supplementation. Pediatrics, 135(1), e196–e198. https://doi.org/10.1542/peds.2014-2121.

    Article  PubMed  Google Scholar 

  • Johnson, C. R., Handen, B. L., Zimmer, M., & Sacco, K. (2010). Polyunsaturated fatty acid supplementation in young children with autism. Journal of Developmental and Physical Disabilities, 22(1), 1–10. https://doi.org/10.1007/s10882-009-9152-x.

    Article  Google Scholar 

  • Johnson, S. M., & Hollander, E. (2003). Evidence that eicosapentaenoic acid is effective in treating autism. Journal of Clinical Psychiatry, 64(7), 848–849. https://doi.org/10.4088/JCP.v64n0718c.

    Article  PubMed  Google Scholar 

  • Karlson, C. W., & Rapoff, M. A. (2009). Attrition in randomized controlled trials for pediatric chronic conditions. Journal of Pediatric Psychology, 34(7), 782–793. https://doi.org/10.1093/jpepsy/jsn122.

    Article  PubMed  Google Scholar 

  • Katan, M. B., Deslypere, J. P., van Birgelen, A. P., Penders, M., & Zegwaard, M. (1997). Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: An 18-month controlled study. Journal of Lipid Research, 38(10), 2012–2022.

    PubMed  Google Scholar 

  • Kerley, C. P., Power, C., Gallagher, L., & Coghlan, D. (2017). Lack of effect of vitamin D3 supplementation in autism: A 20-week, placebo-controlled RCT. Archives of Disease in Childhood, 102(11), 1030–1036. https://doi.org/10.1136/archdischild-2017-312783.

    Article  PubMed  Google Scholar 

  • Lewis, R. D., Laing, E. M., Hill Gallant, K. M., Hall, D. B., McCabe, G. P., Hausman, D. B., & Weaver, C. M. (2013). A randomized trial of vitamin D3 supplementation in children: Dose-response effects on vitamin D metabolites and calcium absorption. The Journal of Clinical Endocrinology & Metabolism, 98(12), 4816–4825. https://doi.org/10.1210/jc.2013-2728.

    Article  Google Scholar 

  • Logan, V. F., Gray, A. R., Peddie, M. C., Harper, M. J., & Houghton, L. A. (2013). Long-term vitamin D3 supplementation is more effective than vitamin D2 in maintaining serum 25-hydroxyvitamin D status over the winter months. British Journal of Nutrition, 109(6), 1082–1088. https://doi.org/10.1017/S0007114512002851.

    Article  PubMed  Google Scholar 

  • Mankad, D., Dupuis, A., Smile, S., Roberts, W., Brian, J., Lui, T., & Anagnostou, E. (2015). A randomized, placebo controlled trial of omega-3 fatty acids in the treatment of young children with autism. Molecular Autism, 6, 18. https://doi.org/10.1186/s13229-015-0010-7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marí-Bauset, S., Llopis-González, A., Zazpe-García, I., Marí-Sanchis, A., & Morales-Suárez-Varela, M. (2015). Nutritional status of children with autism spectrum disorders (ASDs): A case–control study. Journal of Autism and Developmental Disordorder, 45(1), 203–212. https://doi.org/10.1007/s10803-014-2205-8.

    Article  Google Scholar 

  • Mazahery, H., Camargo, C. A. Jr., Conlon, C., Beck, K. L., Kruger, M. C., & von Hurst, P. R. (2016a). Vitamin D and autism spectrum disorder: A literature review. Nutrients, 8(4), 236. https://doi.org/10.3390/nu8040236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazahery, H., Conlon, C., Beck, K. L., Kruger, M. C., Stonehouse, W., Camargo, C. A. Jr., & von Hurst, P. R. (2016b). Vitamin D and omega-3 fatty acid supplements in children with autism spectrum disorder: A study protocol for a factorial randomised, double-blind, placebo-controlled trial. Trials, 17(1), 295. https://doi.org/10.1186/s13063-016-1428-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazahery, H., Stonehouse, W., Delshad, M., Kruger, M. C., Conlon, C. A., Beck, K. L., & von Hurst, P. R. (2017). Relationship between long chain n–3 polyunsaturated fatty acids and autism spectrum disorder: Systematic review and meta-analysis of case–control and randomised controlled trials. Nutrients, 9(2), 28. https://doi.org/10.3390/nu9020155.

    Article  Google Scholar 

  • Mazahery, H., Stonehouse, W., & von Hurst, P. R. (2015). The effect of monthly 50,000 IU or 100,000 IU vitamin D supplements on vitamin D status in premenopausal Middle Eastern women living in Auckland. European Journal of Clinical Nutrition, 69(3), 367–372. https://doi.org/10.1038/ejcn.2014.264.

    Article  PubMed  Google Scholar 

  • Mazahery, H., & von Hurst, P. R. (2015). Factors affecting 25-Hydroxyvitamin D concentration in response to vitamin D supplementation. Nutrients, 7(7), 5111–5142. https://doi.org/10.3390/nu7075111.

    Article  PubMed  PubMed Central  Google Scholar 

  • McPheeters, M. L., Warren, Z., Sathe, N., Bruzek, J. L., Krishnaswami, S., Jerome, R. N., & Veenstra-Vanderweele, J. (2011). A systematic review of medical treatments for children with autism spectrum disorders. Pediatrics, 127(5), e1312–e1321. https://doi.org/10.1542/peds.2011-0427.

    Article  PubMed  Google Scholar 

  • Meguid, N. A., Atta, H. M., Gouda, A. S., & Khalil, R. O. (2008). Role of polyunsaturated fatty acids in the management of Egyptian children with autism. Clinical Biochemistry, 41(13), 1044–1048. https://doi.org/10.1016/j.clinbiochem.2008.05.013.

    Article  PubMed  Google Scholar 

  • Meiri, G., Bichovsky, Y., & Belmaker, R. H. (2009). Omega 3 fatty acid treatment in autism. Journal of Child and Adolescent Psychopharmacology, 19(4), 449–451. https://doi.org/10.1089/cap.2008.0123.

    Article  PubMed  Google Scholar 

  • Milte, C. M., Parletta, N., Buckley, J. D., Coates, A. M., Young, R. M., & Howe, P. R. (2012). Eicosapentaenoic and docosahexaenoic acids, cognition, and behavior in children with attention-deficit/hyperactivity disorder: A randomized controlled trial. Nutrition, 28(6), 670–677. https://doi.org/10.1016/j.nut.2011.12.009.

    Article  PubMed  Google Scholar 

  • Ministry of Health and Cancer Society of New Zealand. (2012). Consensus Statement on Vitamin D and Sun Exposure in New Zealand. Wellington: Ministry of Health and Cancer Society of New Zealand.

    Google Scholar 

  • Ooi, Y. P., Weng, S. J., Jang, L. Y., Low, L., Seah, J., Teo, S., & Sung, M. (2015). Omega-3 fatty acids in the management of autism spectrum disorders: Findings from an open-label pilot study in Singapore. European Journal of Clinical Nutrition, 69(8), 969–971. https://doi.org/10.1038/ejcn.2015.28.

    Article  PubMed  Google Scholar 

  • Parham, L. D., Ecker, C., Miller-Kuhaneck, H., Henry, D. A., & Glennon, T. (2007). Sensory processing measure (SPM) manual. Los Angeles: Western Psychological Services.

    Google Scholar 

  • Parletta, N., Niyonsenga, T., & Duff, J. (2016). Omega-3 and omega-6 polyunsaturated fatty acid levels and correlations with symptoms in children with attention deficit hyperactivity disorder, autistic spectrum disorder and typically developing controls. PLOS ONE, 11(5), e0156432. https://doi.org/10.1371/journal.pone.0156432.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patrick, L., & Salik, R. (2005). The effect of essential fatty acid supplementation on language development and learning skills in autism and Asperger’s syndrome. Autism Asperger’s Digestion, 39, 36–37.

    Google Scholar 

  • Patrick, R. P., & Ames, B. N. (2015). Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: Relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB Journal, 29(6), 2207–2222. https://doi.org/10.1096/fj.14-268342.

    Article  PubMed  Google Scholar 

  • Raine, A., Portnoy, J., Liu, J., Mahoomed, T., & Hibbeln, J. R. (2015). Reduction in behavior problems with omega-3 supplementation in children aged 8–16 years: A randomized, double-blind, placebo-controlled, stratified, parallel-group trial. Journal of Child Psychology and Psychiatry, 56(5), 509–520. https://doi.org/10.1111/jcpp.12314.

    Article  PubMed  Google Scholar 

  • Robson, L. G., Dyall, S., Sidloff, D., & Michael-Titus, A. T. (2010). Omega-3 polyunsaturated fatty acids increase the neurite outgrowth of rat sensory neurones throughout development and in aged animals. Neurobiology of Aging, 31(4), 678–687. https://doi.org/10.1016/j.neurobiolaging.2008.05.027.

    Article  PubMed  Google Scholar 

  • Rockell, J. E. P., Skeaff, C. M., Venn, B. J., Williams, S. M., & Green, T. J. (2008). Vitamin D insufficiency in New Zealanders during the winter is associated with higher parathyroid hormone concentrations: Implications for bone health? New Zealand Medical Journal, 121(1286), 75–84.

    PubMed  Google Scholar 

  • Rothman, K. J. (1990). No adjustments are needed for multiple comparisons. Epidemiology, 1(1), 43–46.

    Article  Google Scholar 

  • Saad, K., Abdel-Rahman, A. A., Elserogy, Y. M., Al-Atram, A. A., Cannell, J. J., Bjorklund, G., & Ali, A. M. (2015). Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutritional Neuroscience., 19(8), 346–351. https://doi.org/10.1179/1476830515y.0000000019.

    Article  PubMed  Google Scholar 

  • Saad, K., Abdel-Rahman, A. A., Elserogy, Y. M., Al-Atram, A. A., El-Houfey, A. A., Othman, H. A., & Abdel-Salam, A. M. (2018). Randomized controlled trial of vitamin D supplementation in children with autism spectrum disorder. Journal of Child Psychology and Psychiatry, 59(1), 20–29. https://doi.org/10.1111/jcpp.12652.

    Article  PubMed  Google Scholar 

  • Salas, A. A., Woodfin, T., Phillips, V., Peralta-Carcelen, M., Carlo, W. A., & Ambalavanan, N. (2018). Dose–response effects of early vitamin D supplementation on neurodevelopmental and respiratory outcomes of extremely preterm infants at 2 years of age: A randomized trial. Neonatology, 113(3), 256–262. https://doi.org/10.1159/000484399.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sifers, S. K., Puddy, R. W., Warren, J. S., & Roberts, M. C. (2002). Reporting of demographics, methodology, and ethical procedures in journals in pediatric and child psychology. Journal of Pediatric Psychology, 27(1), 19–25. https://doi.org/10.1093/jpepsy/27.1.19.

    Article  PubMed  Google Scholar 

  • Singh, K., Connors, S. L., Macklin, E. A., Smith, K. D., Fahey, J. W., Talalay, P., & Zimmerman, A. W. (2014). Sulforaphane treatment of autism spectrum disorder (ASD). Proceedings of the National Academy of Sciences, 111(43), 15550–15555. https://doi.org/10.1073/pnas.1416940111.

    Article  Google Scholar 

  • Tang, M., Zhang, M., Cai, H., Li, H., Jiang, P., Dang, R., & Wu, Y. (2016). Maternal diet of polyunsaturated fatty acid altered the cell proliferation in the dentate gyrus of hippocampus and influenced glutamatergic and serotoninergic systems of neonatal female rats. Lipids in Health and Disease, 15(1), 71. https://doi.org/10.1186/s12944-016-0236-1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ucuz, I. I., Dursun, O. B., Esin, İS., Özgeriş, F. B., Kurt, N., Kiziltunç, A., & Orbak, Z. (2015). The relationship between Vitamin D, autistic spectrum disorders, and cognitive development: Do glial cell line-derived neurotrophic factor and nerve growth factor play a role in this relationship? International Journal of Developmental Disabilities, 61(4), 222–230. https://doi.org/10.1179/2047387714Y.0000000054.

    Article  Google Scholar 

  • van der Wurff, I. S. M., Meyer, B. J., & de Groot, R. H. M. (2017). A review of recruitment, adherence and drop-out rates in omega-3 polyunsaturated fatty acid supplementation trials in children and adolescents. Nutrients. 9(5), 474. https://doi.org/10.3390/nu9050474.

    Article  PubMed Central  Google Scholar 

  • Vieth, R., Kimball, S., Hu, A., & Walfish, P. G. (2004). Randomized comparison of the effects of the vitamin D3 adequate intake versus 100 mcg (4000 IU) per day on biochemical responses and the wellbeing of patients. Nutrition Journal, 3, 8. https://doi.org/10.1186/1475-2891-3-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Voigt, R. G., Mellon, M. W., Katusic, S. K., Weaver, A. L., Matern, D., Mellon, B., & Barbaresi, W. J. (2014). Dietary docosahexaenoic acid supplementation in children with autism. Journal of Pediatric Gastroenterology and Nutrition, 58(6), 715–722. https://doi.org/10.1097/mpg.0000000000000260.

    Article  PubMed  Google Scholar 

  • Wang, T., Shan, L., Du, L., Feng, J., Xu, Z., Staal, W. G., & Jia, F. (2016). Serum concentration of 25-hydroxyvitamin D in autism spectrum disorder: A systematic review and meta-analysis. European Child & Adolescent Psychiatry, 25(4), 341–350. https://doi.org/10.1007/s00787-015-0786-1.

    Article  Google Scholar 

  • Yui, K., Koshiba, M., Nakamura, S., & Kobayashi, Y. (2012). Effects of large doses of arachidonic acid added to docosahexaenoic acid on social impairment in individuals with autism spectrum disorders: A double-blind, placebo-controlled, randomized trial. Journal of Clinincal Psychopharmacology, 32(2), 200–206. https://doi.org/10.1097/JCP.0b013e3182485791.

    Article  Google Scholar 

Download references

Funding

Partial funding for the study was provided by Massey University Strategic Innovation Fund, Massey University, New Zealand. Additional support was provided by Douglas Nutrition, Pty. Ltd., NZ who were supplying the active supplement and identical-appearing placebo, but who had no input into study design, implementation, data management, statistical analysis or reporting of results.

Author information

Authors and Affiliations

Authors

Contributions

PRvH: conceived and designed the study, acquired funding and ethics approval, and supervised the study; HM and OM: coordinated recruitment, participant management, and data collection; HM: conducted the data-analysis with supervision from BJ; HM: prepared the manuscript; CC, KLB, and MK: supervised the trial; WS: advised on the omega-3 fatty acid section and statistical analysis; CACJr: advised on the vitamin D section; BM: advised on the RBC fatty acids laboratory protocol; BT: advised on the autism section. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pamela R. von Hurst.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazahery, H., Conlon, C.A., Beck, K.L. et al. A Randomised-Controlled Trial of Vitamin D and Omega-3 Long Chain Polyunsaturated Fatty Acids in the Treatment of Core Symptoms of Autism Spectrum Disorder in Children. J Autism Dev Disord 49, 1778–1794 (2019). https://doi.org/10.1007/s10803-018-3860-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-018-3860-y

Keywords

Navigation