Skip to main content

Advertisement

Log in

Determining the optimal nitrogen source for large-scale cultivation of filamentous cyanobacteria

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

As the world’s population continues to increase and the adverse effects of anthropomorphic CO2 intensify, it is becoming increasingly important to develop biofuels and chemicals from sustainable resources. Filamentous cyanobacteria, including Anabaena sp. PCC 7120, have emerged as a promising source of renewable chemicals and biofuels due to their minimal nutrient requirements and the relative ease with which they can be genetically engineered to produce a diversity of products. This study evaluated the effects of several nitrogen sources on the growth of Anabaena sp. PCC 7120, and then performed an environmental comparative study on a theoretical large-scale production process to down-select to the best nitrogen source. Sodium nitrate and ammonium chloride yielded 65 % more growth compared to the other nitrogen sources evaluated. Ammonium chloride yielded marginal savings of US$22,318 annually, compared to sodium nitrate over a 27-year lifespan of a proposed chemical production facility utilizing filamentous cyanobacteria. Sodium nitrate had substantially greater negative impacts in every environmental category compared to ammonium chloride. For example, sodium nitrate had a ∼threefold greater negative impact in human health, ecosystem quality, and resources categories. Thus, we concluded that ammonium chloride is the preferred nitrogen source in large-scale processes involving filamentous cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acero A, Rodríguez C, Ciroth A (2014) LCIA methods–impact assessment methods in life cycle assessment and their impact categories. GreenDelta GmbH, Berlin, Germany 23 p

  • Allen MM, Stanier R (1968) Selective isolation of blue-green algae from water and soil. Microbiol 51:203–209

    CAS  Google Scholar 

  • Archer MC (2012) Hazards of nitrate, nitrite, and N-nitroso compounds in human nutrition. In: Hatchcock JN (ed) Nutritional toxicology. Academic Press, NY pp 327–281

  • Asdrubali F, Cotana F, Rossi F, Presciutti A, Rotili A, Guattari C (2015) Life cycle assessment of new oxy-fuels from biodiesel-derived glycerol. Energies 8:1628–1643

    Article  CAS  Google Scholar 

  • Baier K, Lehmann H, Stephan DP, Lockau W (2004) NblA is essential for phycobilisome degradation in Anabaena sp. strain PCC 7120 but not for development of functional heterocysts. Microbiol 150:2739–2749

    Article  CAS  Google Scholar 

  • Bauer CC, Buikema WJ, Black K, Haselkorn R (1995) A short-filament mutant of Anabaena sp. strain PCC 7120 that fragments in nitrogen-deficient medium. J Bacteriol 177:1520–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann H, Tillman A-M (2004) The Hitch Hiker’s Guide to LCA. An orientation in life cycle assessment methodology and application. Studentlitteratur, Lund

    Google Scholar 

  • Bezerra RP, Matsudo MC, Sato S, Converti A, de Carvalho JCM (2013) Fed-batch cultivation of Arthrospira platensis using carbon dioxide from alcoholic fermentation and urea as carbon and nitrogen sources. BioEnergy Res 6:1118–1125

  • Boussiba S, Gibson J (1991) Ammonia translocation in cyanobacteria. FEMS Microbiol Rev 8:1–14

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Bryant DA (2006) The molecular biology of cyanobacteria, vol 1. Springer Science, Berlin

    Google Scholar 

  • Buikema WJ, Haselkorn R (1991) Characterization of a gene controlling heterocyst differentiation in the cyanobacterium Anabaena 7120. Gene Dev 5:321–330

    Article  CAS  PubMed  Google Scholar 

  • Burnat M, Herrerro A, Flores E (2014) Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci U S A 111:3823–3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castenholz RW (1988) Culturing methods for cyanobacteria. Meth Enzymol 167:68–93

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Cockburn A, Brambilla G, Fernández M-L, Arcella D, Bordajandi LR, Cottrill B, van Peteghem C, Dorne J-L (2013) Nitrite in feed: from animal health to human health. Toxicol Appl Pharm 270:209–217

    Article  CAS  Google Scholar 

  • Cruz-Martínez C, Jesus C, Matsudo M, Danesi E, Sato S, Carvalho J (2015) Growth and composition of Arthrospira (Spirulina) platensis in a tubular photobioreactor using ammonium nitrate as the nitrogen source in a fed-batch process. Braz J Chem Eng 32:347–356

    Article  Google Scholar 

  • Drath M, Kloft N, Batschauer A, Marin K, Novak J, Forchhammer K (2008) Ammonia triggers photodamage of photosystem II in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol 147:206–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehira S, Ohmori M (2006) NrrA, a nitrogen‐responsive response regulator facilitates heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 59:1692–1703

    Article  CAS  PubMed  Google Scholar 

  • Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G* Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  PubMed  Google Scholar 

  • Finkbeiner M, Inaba A, Tan R, Christiansen K, Klüppel H-J (2006) The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess 11:80–85

    Article  Google Scholar 

  • Flores E, Herrero A (2005) Nitrogen assimilation and nitrogen control in cyanobacteria. Biochem Soc Trans 33:164–167

    Article  CAS  PubMed  Google Scholar 

  • Flores E, Frías JE, Rubio LM, Herrero A (2005) Photosynthetic nitrate assimilation in cyanobacteria. Photosynth Res 83:117–133

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi A, Zahediasl S (2012) Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab 10:486

    Article  PubMed  PubMed Central  Google Scholar 

  • Goedkoop M, Oele M, de Schryver A, Vieira M, Hegger S (2008) SimaPro database manual methods library. PRé Consultants, The Netherlands

    Google Scholar 

  • Goedkoop M, Schryver A, Oele M, Durksz S, de Roest D (2010) Introduction to LCA with SimaPro 7. Pré consultants, The Netherlands

    Google Scholar 

  • Gu L, Xiang X, Raynie D, Gibbons W, Zhou R (2012) Biosolar conversion of CO2 and H2O to long-chain alcohols by engineered cyanobacteria. In: Proceedings from Sun Grant National Conference: Science for Biomass Feedstock Production and Utilization, New Orleans, LA. Retrieved from www.sungrant.tennessee.edu/NatConference

  • Guinée JB (2002) Handbook on life cycle assessment operational guide to the ISO standards. Int J Life Cycle Assess 7:311–313

    Article  Google Scholar 

  • Halfmann C, Gu L, Gibbons W, Zhou R (2014a) Genetically engineering cyanobacteria to convert CO2, water, and light into the long-chain hydrocarbon farnesene. Appl Microbiol Biotechnol 98:9869–9877

    Article  CAS  PubMed  Google Scholar 

  • Halfmann C, Gu L, Zhou R (2014b) Engineering cyanobacteria for the production of a cyclic hydrocarbon fuel from CO2 and H2O. Green Chem 16:3175–3185

    Article  CAS  Google Scholar 

  • Herrero A, Muro-Pastor AM, Flores E (2001) Nitrogen control in cyanobacteria. J Bacteriol 183:411–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn KJ (2008) The effect of nitrates, pH, and dissolved inorganic carbon concentrations on the extracellular polysaccharide of three strains of cyanobacteria belonging to the family Nostocaceae. Masters Thesis, Virginia Polytechnic Institute and State University

  • Johnson TJ, Hildreth MG, Gu L, Zhou R, Gibbons WR (2015) Testing a dual-fluorescence assay to monitor the viability of filamentous cyanobacteria. J Microbiol Methods 113:57–64

    Article  CAS  PubMed  Google Scholar 

  • Johnson TJ, Zahler JD, Baldwin EL, Zhou R, Gibbons WR (2016a) Optimizing cyanobacteria growth conditions in a sealed environment to enable chemical inhibition tests with volatile chemicals. J Microbiol Methods 126:54–59

    Article  CAS  PubMed  Google Scholar 

  • Johnson TJ, Gu L, Hildreth MB, Zhou R, Gibbons WR (2016b) Evaluating viable cell indicators for filamentous cyanobacteria and investigating their applications. J Microbiol Biotechnol Food Sci (under revision)

  • Johnson TJ, Jahandideh A, Johnson MD, Fields KH, Richardson JW, Muthukumarappan K, Cao Y, Gu Z, Zhou R, Gibbons WR (2016c) Producing next-generation biofuels from filamentous cyanobacteria: a technoeconomic analysis. Algal Res (under review)

  • Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2:a000315

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurent S, Chen H, Bédu S, Ziarelli F, Peng L, Zhang C-C (2005) Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 102:9907–9912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DY, Rhee G (2001) The effect of 2,5,2′,5′‐tetrachlorobiphenyl on growth and death of the cyanobacterium Anabaena flos‐aquae. Environ Toxicol Chem 20:2189–2192

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Scappino L, Haselkorn R (1992) The patA gene product, which contains a region similar to CheY of Escherichia coli, controls heterocyst pattern formation in the cyanobacterium Anabaena 7120. Proc Natl Acad Sci U S A 89:5655–5659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado IM, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162:50–56

    Article  CAS  PubMed  Google Scholar 

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88:3389–3401

    Article  CAS  Google Scholar 

  • Martinez L, Knysak C, Guimarães LC, Danesi E, Sato S, Carvalho J (2010) Fed-batch cultivation of Spirulina (Arthrospira) platensis in tubular reactor using ammonium nitrate as nitrogen source. J Biotechnol 150:394

    Article  Google Scholar 

  • Mathews JA (2008) Carbon-negative biofuels. Energ Policy 36:940–945

    Article  Google Scholar 

  • Merino-Puerto V, Herrero A, Flores E (2013) Cluster of genes that encode positive and negative elements influencing filament length in a heterocyst-forming cyanobacterium. J Bacteriol 195:3957–3966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merino‐Puerto V, Mariscal V, Mullineaux CW, Herrero A, Flores E (2010) Fra proteins influencing filament integrity, diazotrophy and localization of septal protein SepJ in the heterocyst‐forming cyanobacterium Anabaena sp. Mol Microbiol 75:1159–1170

    Article  PubMed  Google Scholar 

  • Moreno-Vivián C, Flores E (2006) Nitrate assimilation in bacteria. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam, pp 263–282

    Google Scholar 

  • Muro-Pastor MI, Florencio FJ (2003) Regulation of ammonium assimilation in cyanobacteria. Plant Physiol Biochem 41:595–603

    Article  CAS  Google Scholar 

  • Ohashi Y, Shi W, Takatani N, Aichi M, S-i M, Watanabe S, Yoshikawa H, Omata T (2011) Regulation of nitrate assimilation in cyanobacteria. J Exp Bot 62:1411–1424

    Article  CAS  PubMed  Google Scholar 

  • Paoletti C, Pushparaj B, Tomaselli (1975) Ricerche sulla nutrizione minerale di Spirulina platensis. Atti del XVII Congresso Nazionale della Società Italiana di Microbiologia, Italian Society of Microbiology, Padua, 833–839

  • Patnaik P (2003) Handbook of inorganic chemicals, vol 1. McGraw-Hill, New York

    Google Scholar 

  • Peccia J, Haznedaroglu B, Gutierrez J, Zimmerman JB (2013) Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends Biotechnol 31:134–138

    Article  CAS  PubMed  Google Scholar 

  • Pernil R, Picossi S, Mariscal V, Herrero A, Flores E (2008) ABC-type amino acid uptake transporters Bgt and N-II of of Anabaena sp. strain PCC 7120 share and ATPase subunit and are expressed in vegetative cells and heterocysts. Mol Microbiol 67:1067–1080

    Article  CAS  PubMed  Google Scholar 

  • Petrovic U (2015) Next-generation biofuels: a new challenge for yeast. Yeast 32:583–593

    Article  CAS  PubMed  Google Scholar 

  • Picossi S, Montesinos ML, Pernil R, Lichtlé C, Herrero A, Flores E (2005) ABC‐type neutral amino acid permease N‐I is required for optimal diazotrophic growth and is repressed in the heterocysts of Anabaena sp. strain PCC 7120. Mol Microbiol 57:1582–1592

    Article  CAS  PubMed  Google Scholar 

  • Picrossi S, Flores E, Herrero A (2015) The LysR-type transcription factor PacR is a global regulator of photosynthetic carbon assimilation in Anabaena. Environ Microbiol 17:3341–3351

    Article  Google Scholar 

  • Plominsky A, Delherbe N, Mandakovic D, Riquelme B, González K, Bergman B, Mariscal V, Vásquez M (2015) Intercellular transfer among the trichomes of the invasive terminal heterocyst forming cyanobacterium Cylindrospermopsis raciborskii CS-505. FEMS Microbiol Lett 362:fnu009

  • R Core Team (2013) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/.

  • Richardson JW, Johnson MD (2015) Financial feasibility analysis of NAABB developed technologies. Algal Res 10:16–24

    Article  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

  • Ruffing AM (2011) Engineered cyanobacteria: teaching an old bug new tricks. Bioeng Bugs 2:136–149

    Article  PubMed  Google Scholar 

  • Sato N, Ohmori M, Ikeuchi M, Tashiro K, Wolk CP, Kaneko T, Okada K, Tsuzuki M, Ehira S, Katoh H (2004) Use of segment-based microarray in the analysis of global gene expression in response to various environmental stresses in the cyanobacterium Anabaena sp. PCC 7120. J Gen Appl Microbiol 50:1–8

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Schlösser UG (1982) Sammlung von Algenkulturen. Ber Deut Bot Ges 95:181–276

    Google Scholar 

  • Shi L, Günther S, Hübschmann T, Wick LY, Harms H, Müller S (2007) Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry A 71:592–598

    Article  PubMed  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialisation of algal biofuels. Bioresource Technol 102:26–34

    Article  CAS  Google Scholar 

  • Stal LJ (2003) Nitrogen cycling in marine cyanobacterial mats. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms. Springer, Berlin, pp 119–140

    Chapter  Google Scholar 

  • Stanca D, Popovici E (1996) Urea as nitrogen source in modified Zarrouk medium. Rev Roum Biol 41:25–31l

    CAS  Google Scholar 

  • Valladares A, Herrero A, Pils D, Schmetterer G, Flores E (2003) Cytochrome c oxidase genes required for nitrogenase activity and diazotrophic growth in Anabaena sp. PCC 7120. Mol Microbiol 47:1239–1249

    Article  CAS  PubMed  Google Scholar 

  • Velzeboer RM, Baker PD, Rositano J (2001) Saxitoxins associated with the growth of the cyanobacterium Anabaena circinalis (Nostocales, Cyanophyta) under varying sources and concentrations of nitrogen. Phycologia 40:305–312

    Article  Google Scholar 

  • Wang X, Liu L (2013) Effects of the different nitrogen, phosphorus and carbon source on the growth and glycogen reserves in Synechocystis and Anabaena. Afr J Microbiol Res 7:2820–2827

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the South Dakota Agricultural Experiment Station under grant SD00H398-11. This work was also supported by the National Aeronautics and Space Administration under award No. NNX11AM03A. We acknowledge use of the South Dakota State University Functional Genomics Core Facility supported in part by NSF/EPSCoR Grant No. 0091948 and by the State of South Dakota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tylor J. Johnson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, T.J., Jahandideh, A., Isaac, I.C. et al. Determining the optimal nitrogen source for large-scale cultivation of filamentous cyanobacteria. J Appl Phycol 29, 1–13 (2017). https://doi.org/10.1007/s10811-016-0923-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0923-3

Keywords

Navigation