Skip to main content

Advertisement

Log in

Assessment of long-term changes in the emergy indexes of an intertidal kelp bed in northern Chile: implications for fisheries management

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Emergy analysis is a thermodynamically based approach to assess the performance of systems and it is a useful tool for environmental decision-making. The kelp resource (Lessonia nigrescens Bory) is the basis for one of the main benthic fisheries of northern Chile, in both economic and social terms. The Atacama coastal kelp fishery is most important at the national level. To better understand the long-term changes in the environmental and socioeconomic factors that govern the sustainability of the resource, emergy synthesis was used to evaluate the performance of the L. nigrescens kelp fishery, based on data from 2000, 2014, and 2018. These emergy assessments show that over this period, the empower base (R) supporting intertidal kelp beds decreased 41%, the annual emergy used in the fishing effort (F) increased by an order of magnitude, and the total emergy used in the fishing system (Y) decreased by 39%. The values of the Landings/Fishing Effort Ratio (EYR) showed a general tendency to decrease, as the Emergy Investment Ratio (EIR) increased. The economic exchange of emergy indicates that in 2014 the extractors/collectors operating the algae fishery obtained the greatest emergy gain by trading. The analysis of the emergy indicators explained the long-term changes in the sustainability of the kelp resource and the emergy balance of the economic transactions over the last 20 years. In addition, the emergy evaluation results can be used as a complement to traditional planning methods, to design and implement system-based, resource management measures to ensure a sustainable and healthy kelp fishery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files in appendices 1 and 2).

Notes

  1. The capacity of the product or service to do work in its system as contrasted with its money value. For example, a kilowatt-hour of electricity will light a bulb for X hours, regardless of the price paid at the meter.

  2. Available energy is energy with the potential to do work against the background conditions in the environment.

References

  • Aburto JA, Stotz WB, Cundill G (2014) Social-ecological collapse: turf governance in the context of highly variable resources in Chile. Ecol Soc 19(1):2

    Article  Google Scholar 

  • Aguirre C, Rutllant JA, Falvey M (2017) Wind waves climatology of the Southeast Pacific Ocean. Int J Climatol 37:4288–4301

    Article  Google Scholar 

  • Alkhuzaima L, Zhub Q, Sarkis J (2021) Evaluating emergy analysis at the nexus of circular economy and sustainable supply chain management. Sustain Prod Consum 25:413–424

    Article  Google Scholar 

  • Barr NG, Kloeppel A, Rees TAV, Scherer C, Taylor RB, Wenzel A (2008) Wave surge increases rates of growth and nutrient uptake in the green seaweed Ulva pertusa maintained at low bulk flow velocities. Aquat Biol 3:179–186

    Article  Google Scholar 

  • Bastianoni S, Marchettini N, Niccolucci V, Pulselli FM (2005) Environmental accounting for the Lagoon of Venice and the case of fishing. Anal Chim 95:143–152

    Article  CAS  Google Scholar 

  • Bastianoni S, Pulselli FM, Rustici M (2006) Exergy versus emergy flow in ecosystems: is there an order in maximizations? Ecol Indic 6:58–62

    Article  CAS  Google Scholar 

  • Bennett S, Wernberg T, Connell SD, Hobday AJ, Johnson CR, Poloczanska ES (2015) The ‘Great Southern Reef’: social, ecological and economic value of Australia’s neglected kelp forests. Mar Freshwater Res 67:47–56

    Article  Google Scholar 

  • Berrios F, Campbell DE, Ortiz M (2017) Emergy evaluation of benthic ecosystems influenced by upwelling in northern Chile: contributions of the ecosystems to the regional economy. Ecol Model 359:146–164

    Article  Google Scholar 

  • Berrios F, Campbell DE, Ortiz M (2018) Emergy-based indicators for evaluating ecosystem health: a case study of three benthic ecosystem networks influenced by coastal upwelling in northern Chile (SE Pacific coast). Ecol Indic 95:379–393

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown MT, Ulgiati S (2016) Assessing the global environmental sources driving the geobiosphere: a revised emergy baseline. Ecol Model 339:126–132

    Article  Google Scholar 

  • Brown MT, Tennenbaum S, Odum HT (1991) Emergy analysis and policy perspectives for the Sea of Cortez, Mexico. Report to the Cousteau Society, Center for Wetlands, University of Florida

  • Brown MT, Campbell DE, DeVilbiss C, Ulgiati S (2016) The geobiosphere emergy baseline: a synthesis. Ecol Model 339:92–95

    Article  Google Scholar 

  • Buonocore E, Picone F, Donnarumma L, Russo GF, Franzese PP (2019) Modeling matter and energy flows in marine ecosystems using emergy and eco-exergy methods to account for natural capital value. Ecol Model 392:137–146

    Article  Google Scholar 

  • Buonocore E, Appolloni L, Russo GF, Franzese PP (2020) Assessing natural capital value in marine ecosystems through an environmental accounting model: a case study in Southern Italy. Ecol Model 419:108958

    Article  Google Scholar 

  • Burgos E, Montefalcone M, Ferrari M, Paoli Ch, Vassallo P, Morri C, Bianchi CN (2017) Ecosystem functions and economic wealth: trajectories of change in seagrass meadows. J Clean Prod 168:1108–1119

    Article  Google Scholar 

  • Campbell DE (1995) The efficacy of fisheries management strategies: a case study of the Gulf of Maine redfish fishery. In: Hall CAS (ed) Maximum power, the ideas and applications of H.T. Odum. University Press of Colorado, Niwot CO, pp 132–148

  • Campbell DE (2000) Using energy systems theory to define, measure, and interpret ecological integrity and ecosystem health. Ecosyst Health 6:181–204

    Article  Google Scholar 

  • Campbell DE (2001) Proposal for including what is valuable to ecosystems in environmental assessments. Environ Sci Technol 35:2867–2873

    Article  CAS  PubMed  Google Scholar 

  • Campbell DE (2003) Emergy analysis of the prehistoric global nitrogen cycle. In: Brown MT et al (eds) Emergy synthesis 2: theory and application of the emergy methodology. University of Florida, Gainesville, FL, Center for Environmental Policy, pp 221–239

    Google Scholar 

  • Campbell DE (2004) Evaluation and emergy analysis of the Cobscook Bay ecosystem. Northeast Nat 11:355–424

    Article  Google Scholar 

  • Campbell DE (2013) Keeping the books for the environment and society: the unification of emergy and financial accounting methods. J Environ Account Manag 1:25–41

    Article  Google Scholar 

  • Campbell DE (2016) Emergy baseline for the Earth: a historical review of the science and a new calculation. Ecol Model 339:96–125

    Article  Google Scholar 

  • Campbell ET (2018) Revealed social preference for ecosystem services using the eco-price. Ecosyst Serv 3:267–275

    Article  Google Scholar 

  • Campbell DE, Garmestani AS (2012) An energy systems view of sustainability: emergy evaluation of the San Luis Basin, Colorado. J Environ Manage 95:72–97

    Article  PubMed  Google Scholar 

  • Campbell DE, Erban LE (2017) A reexamination of the emergy input to a system from the wind. In: Brown MT, Sweeney S, Campbell DE, Huang S, Rydberg T, Ulgiati S (eds.) Emergy synthesis 9. Proceedings of the 9th Biennial Emergy Conference Gainesville, pp 13–19

  • Campbell DE, Meisch M, Demoss T, Pomponio J, Bradley MP (2004) Keeping the books for environmental systems: an emergy analysis of West Virginia. Environ Monit Assess 94:217–230

    Article  PubMed  Google Scholar 

  • Campos L, Ortiz M, Rodríguez-Zaragoza FA, Oses R (2020) Macrobenthic community establishment on artificial reefs with Macrocystis pyrifera over barren-ground and soft-bottom habitats. Global Ecol Conserv 23:e01184

    Article  Google Scholar 

  • Campos L, Ortiz M, Rodríguez-Zaragoza FA (2021) Evaluating the macroscopic system properties of kelp species planted on two artificial reefs: implications for the restoration of perturbed subtidal areas. Estuar Coast Shelf Sci 252:107266

    Article  Google Scholar 

  • Canales CM, Hurtado C, Techeira C (2018) Implementing a model for data-poor fisheries based on steepness of the stock-recruitment relationship, natural mortality and local perception of population depletion. The case of the kelp Lessonia berteroana on coasts of north-central Chile. Fish Res 198:31–42

    Article  Google Scholar 

  • Cancino J, Santelices B (1984) Ecological importance of holdfasts of Lessonia nigrescens Bory (Phaeophyta) in central Chile. Rev Chil Hist Nat 75:217–231

    Google Scholar 

  • Cartography A.A.A III Region. Subpesca.cl. https://www.subpesca.cl/portal/619/w3-article-80640.html. Accessed 30 April 2020

  • Castilla JC, Defeo O (2001) Latin American benthic shellfisheries: emphasis on co-management and experimental practices. Rev Fish Biol Fisher 11:1–30

    Article  Google Scholar 

  • Cavalett O, Ferraz de Queiroz J, Ortega E (2007) Emergy accounting of fish aquaculture chains in Brazil. Biologi Italiani 7:53–61

    Google Scholar 

  • Chavez F, Bertrand A, Guevara-Carrasco R, Soler P, Csirke J (2008) The northern Humboldt Current System: brief history, present status and a view towards the future. Prog Oceanogr 79:95–105

    Article  Google Scholar 

  • Cheng Ch, Chen Ch, Wu S, Mirza ZA, Liu Z (2017) Emergy evaluation of cropping, poultry rearing, and fish raising systems in the drawdown zone of Three Gorges Reservoir of China. J Clean Prod 144:559–571

    Article  Google Scholar 

  • Christensen NL, Bartuska AM, Brown JH, Carpenter S, D’Antonio C, Francis R, Franklin JF, MacMahon JA, Noss RF, Parsons DJ, Peterson ChH, Turner MG, Woodmansee RG (1996) The report of the Ecological Society of America Committee on the scientific basis for ecosystem management. Ecol Appl 6:665–691

    Article  Google Scholar 

  • Cordero RR, Damiani A, Seckmeyer G Jorquera J, Caballero M, Rowe P, Ferrer J, Mubarak R, Carrasco J, Rondanelli R, Matus M, Laroze D (2016) The solar spectrum in the Atacama Desert. Sci Rep 6: 22457

  • Correa JA, Lagos NA, Medina MH, Castilla JC, Cerda M, Ramírez M, Martínez E, Faugeron S, Andrade S, Pinto R, Contreras L (2006) Experimental transplants of the large kelp Lessonia nigrescens (Phaeophyceae) in high-energy wave exposed rocky intertidal. J Exp Mar Biol Ecol 335:13–18

    Article  Google Scholar 

  • Coscieme L, Pulselli FM, Marchettini N, Sutton PC, Anderson Sh, Sc S (2014) Emergy and ecosystem services: a national biogeographical assessment. Ecosyst Serv 7:152–129

    Article  Google Scholar 

  • Cowan JH, Rice JC, Walters CJ, Hilborn R, Essington TE, Day JW, Boswell KM (2012) Challenges for Implementing an Ecosystem Approach to Fisheries Management. Mar Coast Fish 4:496–510

    Article  Google Scholar 

  • Daneri G, Dellarossa V, Quinones R, Jacob B, Montero P, Ulloa O (2000) Primary production and community respiration in the Humboldt Current System off Chile and associated oceanic areas. Mar Ecol Prog Ser 197:41–49

    Article  Google Scholar 

  • David LH, Pinho SM, Agostinho F, Kimpara JM, Keesman KJ, Garcia F (2021) Emergy synthesis for aquaculture: a review on its constraints and potentials. Rev Aquac 13:1119–1138

    Article  Google Scholar 

  • De La Fuente G, Asnagh V, Chiantore M, Thrush S, Povero P, Vassallo P, Petrillo M, Paoli C (2019) The effect of Cystoseira canopy on the value of midlittoral habitats in NW Mediterranean, an emergy assessment. Ecol Model 404:1–11

    Article  Google Scholar 

  • Frangoudes K (2011) Seaweeds fisheries management in France, Japan, Chile and Norway. Cah Biol Mar 52: 517–525

  • Franzese PP, Buonocore E, Donnarumma L, Russo GF (2017) Natural capital accounting in marine protected areas: the case of the Islands of Ventotene and S. Stefano (Central Italy). Ecol Model 360:290–299

    Article  Google Scholar 

  • Garcia SM, Cochrane KL (2005) Ecosystem approach to fisheries: a review of implementation guidelines. ICES J Mar Sci 62:311–318

    Article  Google Scholar 

  • Gasparatos A, El-Haram M, Horner M (2008) A critical review of reductionist approaches for assessing the progress towards sustainability. Environ Impact Assess Rev 28:286–311

    Article  Google Scholar 

  • Glavic P, Lukman R (2007) Review of sustainability terms and their definitions. J Clean Prod 15:1875–1885

    Article  Google Scholar 

  • González J, Tapia C, Wilson A, Garrido J, Ávila M (2002) Estrategias de explotación Sustentable Algas Pardas en la Zona Norte de Chile. Informe Final Proyecto FIP 2000–19. https://www.subpesca.cl/fipa/613/articles-88949_informe_final.pdf. Accessed 10 April 2020

  • González AV, Beltrán J, Hiriart-Bertrand L, Flores V, de Reviers B, Correa JA, Santelices B (2012) Identification of cryptic species in the Lessonia nigrescens complex (Phaeophyceae, Laminariales). J Phycol 48:1153–1165

    Article  PubMed  Google Scholar 

  • Hall SJ, Mainprize B (2004) Towards ecosystem-based fisheries management. Fish and Fisheries 5:1–20

    Article  Google Scholar 

  • He J, Wan Y, Feng L, Ai J, Wang Y (2016) An integrated data envelopment analysis and emergy-based ecological footprint methodology in evaluating sustainable development, a case study of Jiangsu Province, China. Ecol Indic 70:23–34

    Article  Google Scholar 

  • Hilborn R (2007) Moving to sustainability by learning from successful fisheries. Ambio 36:296–303

    Article  Google Scholar 

  • Hong S, Lee J, Kang D (2015) Emergy evaluation of management measures for derelict fishing gears in Korea. Ocean Sci J 50:603–613

    Article  Google Scholar 

  • Hu W, Hu Y, Hu Z, Huang Y, Zhao Y, Ren M (2019) Emergy-based sustainability evaluation of China’s marine eco-economic system during 2006–2015. Ocean Coast Manag 179:104811

    Article  Google Scholar 

  • Ibarra AA, Reid C, Thorpe A (2000) Neo-liberalism and its impact on overfishing and overcapitalisation in the marine fisheries of Chile, Mexico and Peru. Food Policy 25:599–622

    Article  Google Scholar 

  • Indicators for sustainable development of marine capture fisheries. FAO Technical Guidelines for Responsible Fisheries. http://www.fao.org/in-action/globefish/publications/details-publication/en/c/344016/. Accessed 25 April 2020

  • Instituto de Fomento Pesquero (IFOP), 2019. Boletines Estadística de Exportación de Productos Pesqueros y Acuícolas 2014–2019. https://www.ifop.cl/comunicaciones/boletines-e-informes/estadistica-de-exportacion-de-productos-pesqueros-y-acuicolas/. Accessed 20 April 2020

  • Iwaniec DM, Childers DL, VanLehn K, Wiek A (2014) Studying, teaching and applying sustainability visions using systems modeling. Sustainability 6:4452–4469

    Article  Google Scholar 

  • Jalili M, Chitsaz A, Hashemian M, Rosen MA (2021) Economic and environmental assessment using emergy of a geotermal power plant. Energy Convers Manag 228:113666

    Article  Google Scholar 

  • Jørgensen SE (1992) Integration of ecosystem theories: a pattern. Kluwer Academic Publishers, Dordrecht

  • Kassila J, Nhhala H, Givernaud T, Monsouri M, Abrehouch A, Mosfioui A (2019) Opportunities for the development of seaweed farming as a supplementary income for small-scale fishermen in Nador lagoon: Experimental cultivations of Gracilaria gracilis (Stackhouse). MedFAR 2(1): 12–26. https://dergipark.org.tr/en/pub/medfar/issue/42937/468834

  • Kharrazi A, Kraines S, Hoangc L, Yarimea M (2014) Advancing quantification methods of sustainability: a critical examination emergy, exergy, ecological footprint, and ecological information-based approaches. Ecol Indic 37:81–89

    Article  Google Scholar 

  • Krumhansl KA, Scheibling RE (2012) Production and fate of kelp detritus. Mar Ecol Prog Ser 467:281–302

    Article  Google Scholar 

  • Layton C, Shelamoff V, Cameron MJ, Tatsumi M, Wright JT, Johnson CR (2019) Resilience and stability of kelp forests: the importance of patch dynamics and environment-engineer feedbacks. PLoS ONE 14(1):e0210220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh E, Paine R, Quinn J, Suchanek T (1987) Wave energy and intertidal productivity. Proc Natl Acad Sci USA 84:1314–1318

    Article  CAS  Google Scholar 

  • Lotka AJ (1922a) Contribution to the energetics of evolution. Proc Nat Acad Sci 8:147–151

  • Lotka AJ (1922b) Natural selection as a physical principle. Proc Nat Acad Sci 8:151–154

  • Lu H, Campbell DE, Zhi-An Li, Ren H (2006) Emergy synthesis of an agro-forest restoration system in lower subtropical China. Ecol Eng 27:175–192

    Article  Google Scholar 

  • Lu H, Campbell DE, Chen J, Qin P, Ren H (2007) Conservation and economic viability of nature reserves: an emergy evaluation of the Yancheng Biosphere Reserve. Biol Conserv 139:415–438

    Article  Google Scholar 

  • Lu H, Fu F, Li H, Campbell DE, Ren H (2015) Eco-exergy and emergy based self-organization of three forest plantations in lower subtropical China. Sci Rep 5:15047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucia U, Fino D, Grisolia G (2021) A thermoeconomic indicator for the sustainable development with social considerations. Environ Dev Sustain. https://doi.org/10.1007/s10668-021-01518-6

  • Mayer AL, Thurston HW, Pawlowski ChW (2004) The multidisciplinary influence of common sustainability índices. Front Ecol Environ 2:419–426

    Article  Google Scholar 

  • Mebratu D (1998) Sustainability and sustainable development: Historical and conceptual review. Environ Impact Assess Rev 18(6):493–520

    Article  Google Scholar 

  • Meltzoff SK, Lichtensztajn YG, Wolfgang S (2002) Competing visions for marine tenure and co-management: genesis of a marine management area system in Chile. Coast Manage 30:85–99

    Article  Google Scholar 

  • Morishita J (2008) What is the ecosystem approach for fisheries management? Mar Policy 32:19–26

    Article  Google Scholar 

  • NEAD (2014) National Environmental Accounting Database. http://www.emergy-nead.com/country/data. Accessed 10 Feb 2021

  • Odum HT (1994) Ecological and general system: an introduction to systems ecology. Revised edition. University Press Colorado, Boulder

  • Odum HT (1996) Environmental accounting: emergy and environmental decision making. John Wiley and Sons, New York, NY

  • Odum HT (2007) Environment, power, and society for the twenty-first century. Columbia University Press, New York

  • Odum HT, Arding JE (1991) Emergy analysis shrimp mariculture Ecuador. Working Paper. Center for Wetlands, Gainesville, FL

  • Odum HT, Odum EC (2000) Modeling for all scales: an introduction to system simulation. Academic Press, San Diego, CA

  • Olawumi TO, Chan DWM (2018) A scientometric review of global research on sustainability and sustainable development. J Clean Prod 183:231–250

    Article  Google Scholar 

  • Ortega L, Castilla JC, Espino E, Yamashiro C, Defeo O (2012) Effects of fishing, market price, and climate on two South American clam species. Mar Ecol Prog Ser 469:71–85

    Article  Google Scholar 

  • Ortiz M (2003) Qualitative modelling of the kelp forest of Lessonia nigrescens Bory (Laminariales: Phaeophyta) in eulittoral marine ecosystems of the south–east Pacific: an approach to management plan assessment. Aquaculture 220:423–436

    Article  Google Scholar 

  • Ortiz M (2008) Mass balanced and dynamic simulations of trophic models of kelp ecosystems near the Mejillones Peninsula of northern Chile (SE Pacific): comparative network structure and assessment of harvest strategies. Ecol Model 216:31–46

    Article  Google Scholar 

  • Ortiz M (2010) Dynamic and spatial models of kelp forest of Macrocystis integrifolia and Lessonia nigrescens (SE Pacific) for assessment harvest scenarios: short term responses. Aquat Conserv 20:4945–5006

    Article  Google Scholar 

  • Ortiz M (2020) Evaluación del estado de la pesquería del recurso algas pardas en la III región de Atacama: Estimación de desembarques/cosechas sustentables para el sector pesquero artesanal. Informe final FIC-ATACAMA BIP n° 30486377-0. https://goreatacama.gob.cl/wp-content/uploads/Universidad-de-Antofagasta-Evaluacion-del-estado-de-la-pesqueria-1.pdf. Accessed 10 February 2021

  • Ortiz M, Levins R (2011) Re-stocking practices and illegal fishing in northern Chile (SE Pacific coast): a study case. Oikos 120:1402–1412

    Article  Google Scholar 

  • Ortiz M, Levins R (2017) Self-feedbacks determine the sustainability of human interventions in eco-social complex systems: Impacts on biodiversity and ecosystem health. PLoS ONE 12(4):e0176163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz M, Campos L, Berrios F, Rodríguez F, Hermosillo B, González J (2013) Network properties and keystoneness assessment in different intertidal communities dominated by two ecosystem engineer species (SE Pacific coast): a comparative analysis. Ecol Model 250(10):307–318

    Article  Google Scholar 

  • Palatnik RR, Zilberman D (2017) Economics of natural resource utilization - the case of macroalgae. In: Pinto A., Zilberman D. (eds) Modeling, Dynamics, optimization and bioeconomics II. DGS 2014. Springer, Cham pp 1-21

  • Pansch Ch, Gómez I, Rothäusler E, Veliz K, Thiel M (2008) Species-specific defense strategies of vegetative versus reproductive blades of the Pacific kelps Lessonia nigrescens and Macrocystis integrifolia. Mar Biol 155:51–62

    Article  Google Scholar 

  • Paoli P, Povero P, Burgos E, Dapueto G, Fanciulli G, Massa F, Scarpellin P, Vassallo P (2018) Natural capital and environmental flows assessment in marine protected areas: the case study of Liguria region (NW Mediterranean Sea). Ecol Model 368:121–135

    Article  Google Scholar 

  • Pedersen MT, Nejrup LB, Fredriksen S, Christie H, Norderhaug KM (2012) Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborea. Mar Ecol Prog Ser 451:45–60

    Article  Google Scholar 

  • Picone F, Buonocore E, D’Agostaro R, Donati S, Chemello R, Franzese PP (2017) Integrating natural capital assessment and marine spatial planning: a case study in the Mediterranean sea. Ecol Model 361:1–13

    Article  Google Scholar 

  • Pulselli F, Coscieme L, Bastianoni S (2011) Ecosystem services as a counterpart of emergy flows to ecosystems. Ecol Model 222:2924–2928

    Article  Google Scholar 

  • Raugei MA (2013) A different take on the emergy baseline – or can there really be any such thing. In: Brown MT, Sweeney S (Eds.) Emergy synthesis 7, theory and applications of the emergy methodology. The Center for Environmental Policy, University of Florida, Gainesville, FL, pp. 61–66

  • Reed DC, Rassweiler A, Carr MH, Cavanaugh KC, Malone DP, Siegel DA (2011) Wave disturbance overwhelms top-down and bottom-up control of primary production in California kelp forests. Ecology 92:2108–2116

    Article  PubMed  Google Scholar 

  • Report and documentation of the international workshop on factors contributing to unsustainability and overexploitation in fisheries. http://www.fao.org/3/a-y3684e.pdf. Accessed 30 April 2020

  • Robin KR, Soewardi K, Setyobudiandi I, Dharmawan AH (2019) Small scale capture fisheries sustainability analysis using emergy (embodied energy) approach. IOP Conf Ser: Earth Environ Sci 278:012067

    Article  Google Scholar 

  • Rosman J, Koseff J, Monismith S, Grover J (2007) A field investigation into the effects of a kelp forest (Macrocystis pyrifera) on coastal hydrodynamics and transport. J Geophys Res 112:C02016

    Article  Google Scholar 

  • Servicio Nacional de Pesca y Acuicultura (SERNAPESCA) (2019) Anuario Estadístico de Pesca (2000–2018). Servicio Nacional de Pesca, Ministerio de Economía Fomento y Reconstrucción, Gobierno de Chile. http://www.sernapesca.cl/informes/estadisticas. Accessed 20 April 2020

  • Siche R, Pereira L, Agostinho F, Ortega E (2010) Convergence of ecological footprint and emergy analysis as a sustainability indicator of countries: Peru as case study. Commun Nonlinear Sci 15:3182–3192

    Article  Google Scholar 

  • Sjafrie NDM, Adrianto L, Damar A, Boer M (2019) The sustainability of seagrass traditional fisheries on the east cost of Bintan Regency. IOP Conf Ser: Earth Environ Sci 241:012019

    Article  Google Scholar 

  • Strub PT, Mesias J, Montecino V, Rutland J (1998) Coastal ocean circulation off western South America. In: Robinson A, Brink K (eds) The sea II. John Wiley and Sons, New York, pp 273-313

  • Subsecretaria de Pesca y Acuicultura (SUBPESCA) (2013) Subsecretaria de Pesca y Acuicultura. Establece Plan de Manejo para los recursos Lessonia nigrescens, L. trabeculata y Macrocystis spp. en la región de Atacama. Región de Atacama. http://www.subpesca.cl/portal/616/w3-article-83727.html. Accessed 18 April 2020

  • Subsecretaria de Pesca y Acuicultura. www.subpesca.cl. Accessed 30 April 2020

  • Sun J, Yuan X, Liu G, Tian K (2019) Emergy and eco-exergy evaluation of wetland restoration based on the construction of a wetland landscape in the northwest Yunnan Plateau. China J Environ Manage 252:109499

    Article  CAS  PubMed  Google Scholar 

  • Tala F, Edding M (2007) First estimates of productivity in Lessonia trabeculata and Lessonia nigrescens (Phaeophyceae, Laminariales) from the southeast Pacific. Phycol Res 55:66–79

    Article  Google Scholar 

  • The ecosystem approach to fisheries. Food and Agriculture Organization of the United Nations technical guidelines for responsible fisheries n° 4 and 2. http://www.fao.org/3/y4470e/y4470e.pdf. Accessed 10 April 2020

  • Thomas F, Espíndola GOM, Gutiérrez D, Vega A, Gudiño V, Pérez E, Rojas G (2016) Evaluación directa de macroalgas/impacto de la extracción sobre la comunidad bentónica, III Región. Informe Final FIP N° 2014–17. ECOS. Estudios Ecológicos y Estudios Pesqueros. https://www.subpesca.cl/fipa/613/articles-89375_informe_final.pdf. Accessed 12 April 2020

  • Vásquez JA (2008) Production, use and fate of Chilean brown seaweeds: resources for a sustainable fishery. J Appl Phycol 20:457–467

    Article  Google Scholar 

  • Vásquez JA, Santelices B (1984) Comunidades de macroinvertebrados en discos adhesivos de Lessonia nigrescens Bory (Phaeophyta) en Chile central. Rev Chil Hist Nat 57:131–154

    Google Scholar 

  • Vásquez JA, Piaget N, Vega AJM (2012) The Lessonia nigrescens fishery in northern Chile: “how you harvest is more important than how much you harvest.” J Appl Phycol 24:417–426

    Article  Google Scholar 

  • Vásquez JA, Zuñiga S, Tala F, Piaget N, Rodríguez DC, Vega JMA (2014) Economic valuation of kelp forests in northern Chile: values of goods and services of the ecosystem. J Appl Phycol 26:1081–1088

    Article  Google Scholar 

  • Vassallo P, Paoli Ch, Rovere A, Montefalcone M, Morri C, Bianchi CN (2013) The value of the seagrass Posidonia oceanica: a natural capital assessment. Mar Pollut Bull 75:157–167

    Article  CAS  PubMed  Google Scholar 

  • Vassallo P, Paoli C, Buonocore E, Franzese PP, Russo GF, Povero P (2017) Assessing the value of natural capital in marine protected areas: a biophysical and trophodynamic environmental accounting model. Ecol Model 355:12–17

    Article  Google Scholar 

  • Vassallo P, Turcato C, Rigo I, Scopesi C, Costa A, Barcella M, Dapueto G, Mariotti M, Paoli Ch (2021) Biophysical accounting of forests’ value under different management regimes: conservation vs. exploitation. Sustainability 13, 4638

  • Vega AJM, Broitman BR, Vásquez JA (2014) Monitoring the sustainability of Lessonia nigrescens (Laminariales, Phaeophyceae) in northern Chile under strong harvest pressure. J Appl Phycol 26:791–801

    Article  Google Scholar 

  • Velimirov B, Field JG, Griffiths CL, Zoutendyk P (1977) The ecology of kelp bed communities in the Benguela upwelling system. Helgolander Wiss Meeresunters 30:495–518

    Article  Google Scholar 

  • Villegas M, Laudien J, Sielfeld W, Arntz W (2007) Macrocystis integrifolia and Lessonia trabeculata (Laminariales; Phaeophyceae) kelp habitat structures and associated macrobenthic community off northern Chile. Helgol Mar Res 62:33–43

    Article  Google Scholar 

  • Westermeier R, Gómez I (1996) Biomass, energy contents and major organic compounds in the brown alga Lessonia nigrescens (Laminariales, Phaeophyceae) from Mehuin, South Chile. Bot Mar 39: 553–559

  • Westermeier R, Murúa P, Patiño DJ, Muñoz L, Müller DG (2016) Holdfast fragmentation of Macrocystis pyrifera (integrifolia morph) and Lessonia berteroana in Atacama (Chile): a novel approach for kelp bed restoration. J Appl Phycol 28:2969–2977

    Article  Google Scholar 

  • Westermeier R, Murúa P, Patiño DJ, Manoli G, Müller DG (2019) Evaluation of kelp harvest strategies: recovery of Lessonia berteroana (Phaeophyceae, Laminariales) in Pan d Azucar. Atacama, Chile. J Appl Phycol 31:575–585

    Article  Google Scholar 

  • Wiek A, Iwaniec D (2014) Quality criteria for visions and visioning in sustainability science. Sustain Sci 9:497–512

    Article  Google Scholar 

  • Yang Q, Liu G, Casazza M, Campbell ET, Giannetti BF, Brown MT (2018) Development of a new framework for non-monetary accounting on ecosystem services valuation. Ecosyst Serv 34:37–54

    Article  Google Scholar 

  • Zúñiga-Jara S, Tala F, Vega A, Piaget N, Vásquez JA (2009) Valor económico de los bosques de algas pardas en las costas de la III y IV Región de Chile. Gestión Ambiental 18:63–86

    Google Scholar 

Download references

Acknowledgements

This work was conducted as part of the Postdoctoral Programme 2018 of the first author funded by the Vicerrectoría de Investigación y Postgrado de la Universidad de Atacama (VRIP), Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Berrios.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Calculation and data sources of the energy and 1 emergy signatures for the intertidal 2 zone of the coast of the Atacama region in the three time periods.

 

Raw data

References and assumptions

 

2000

2014

2018

 

Intertidal area of Lessonia nigrescens kelp forest (m2)

8.71E + 06

8.71E + 06

8.71E + 06

Average value between González et al. (2002) and Thomas et al. (2016)

Length of intertidal kelp forest (m)

6.59E + 05

6.59E + 05

6.59E + 05

This study from Cartography A.A.A III Region, www. subpesca.cl

Approximate coverage area kelp

6.53E + 06

6.53E + 06

6.53E + 06

This is an estimate of the area covered by kelp 25 to 100% (75% area covered by kelp)

Approximate coverage length kelp

4.94E + 05

4.94E + 05

4.94E + 05

This is an estimate of the legth covered by kelp 25 to 100% (75% area covered by kelp),

Estimate band of kelp along shore

13.23

13.23

13.23

This is an estimate of the band covered by kelp

Energy sources

    

1) Solar energy absorbed

    

Area (m2)

6.53E + 06

6.53E + 06

6.53E + 06

 

Solar radiation (J m −2 y−1)

7.30E + 09

7.30E + 09

7.30E + 09

https://power.larc.nasa.gov/data-access-viewer/

Albedo

0.18

0.18

0.18

https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MCD43C3_M_BSA

Equation = (area) x (solar radiation) x (1-albedo)

Solar energy absorbed by kelp (J y−1)

3.91E + 16

3.91E + 16

3.91E + 16

 

Transformity (sej J-1)

1

1

1

 

Annual emergy absorbed (sej y−1)

3.91E + 16

3.91E + 16

3.91E + 16

 

2) Kinetic energy of wind absorbed at the surface

    

Area (m2)

6.53E + 06

6.53E + 06

6.53E + 06

 

Density (kg m−3)

1.225

1.225

1.225

Sea level 15° C

Drag coeff. over water

0.00125

0.00125

0.00125

Kara et al. (2007)

Wind velocity (m s−1)

4.24

4.18

4.22

https://power.larc.nasa.gov/data-access-viewer/

Time (seconds/year)

3.16E + 07

3.16E + 07

3.16E + 07

60X60X24X365.25

Geostrophic wind velocity (m s−1)

7.06

6.97

7.03

Obtained from 10/6*wind velocity, from Campbell and Erban (2017)

Equation = (area) x (density) x (drag coeff.) x (geostrophic wind velocity)3 x (time)

Wind energy absorbed (J y−1)

1.11E + 14

1.07E + 14

1.10E + 14

 

Transformity (sej J−1)

1241

1241

1241

New calculation Campbell and Erban (2017)

Annual emergy absorbed (sej y−1)

1.38E + 17

1.32E + 17

1.36E + 17

 

3) Tidal energy absorbed using area covered by kelp

    

Area (m2)

6.53E + 06

6.53E + 06

6.53E + 06

 

Tides per year

706

706

706

https://tidesandcurrents.noaa.gov/historic_tide_tables.html

Height range (m)

1.55

1.58

1.6

https://tidesandcurrents.noaa.gov/historic_tide_tables.html

Density (kg m−3)

1.03E + 03

1.03E + 03

1.03E + 03

Seawater 35 ‰

Gravity (m s−2)

9.8

9.8

9.8

 

Fraction of the day that the kelp beds are covered with water

0.45

0.45

0.45

This study: this number is based on the fraction of time (day) that the intertidal zone is inundated

Equation = (area elevated) x (height)2 x (density) x (tides/year) x (gravity)

Tidal energy absorbed (J y−1)

5.00E + 13

5.19E + 13

5.60E + 13

 

Transformity (sej J−1)

35,400

35,400

35,400

New transformity for the tide from the geobiosphere baseline paper Campbell (2016)

Annual emergy absorbed (sej y−1)

1.77E + 18

1.84E + 18

1.98E + 18

 

4) Wave energy absorbed

    

Coverage shore length (m) kelp

4.94E + 05

4.94E + 05

4.94E + 05

 

Absorption ratio (amplitude is 1/8 height)

0.13

0.13

0.13

Odum and Arding (1991)

Density (kg m−3)

1.03E + 03

1.03E + 03

1.03E + 03

Seawater 35 ‰

Significant wave height (m)

2.00

2.00

2.00

Aguirre et al. (2017)

Mean wave height (m)

1.26

1.26

1.26

Significant wave height adjusted by 0.6275 to give mean wave height (m) https://www.weather.gov/key/marine_sigwave

Gravity (m s−1)

9.8

9.8

9.8

 

Time inundated (seconds year−1), seconds that waves are present on the shoreline over the kelp bed

1.52E + 07

1.52E + 07

1.52E + 07

60X60X11.53X365.5

Seconds that waves are presents on the shoreline over the kelp bed

Reflection

0.5

0.5

0.5

We assume 50% is absorbed and 50% is reflected from this rocky shore

Wave velocity (m s−1)

3.90

3.93

3.96

Velocity is: square root of gravity times depth, depths: 1.55, 1.58 and 1.6 m

Equation = (coverage shore length kelp) x (absorption ratio) x (density) x (gravity) x (0.5, center of gravity) x (time inundated) x (mean wave height)2 x (reflection) x (wave velocity)

Wave energy absorbed (J y−1)

1.45E + 16

1.46E + 16

1.47E + 16

 

Transformity (sej J−1)

79,800

79,800

79,800

New transformity calculated relative to the new baseline, Campbell (manuscript)

Annual emergy absorbed (sej y−1)

1.16E + 21

1.17E + 21

1.18E + 21

 

Biomass ratio

1.000

0.467

0.604

This assumes that the wave energy absorbed by the kelp depends on the kelp biomass present in the area. Number is scaled to the maximum biomass observed. Data biomass from González et al. (2002), Thomas et al. (2016) and Ortiz (2020)

Adjusted annual wave emergy absorbed

1.16E + 21

5.46E + 20

7.11E + 20

Adjusted wave emergy absorbed by the kelp biomass using P/B ratio to scale biomass and assuming that the largest biomass includes the whole front of wave impact. If it is actually less the emergy of the energy absorbed should be adjusted by that factor

5) Nitrogen uptake by Lessonia nigrescens kelps forest

3.83

2.84

1.00

Ratio uptake N and production is same for biomass

Production Lessonia kelp forest (g wwt. y−1)

1.77E + 11

1.32E + 11

4.63E + 10

Production estimates from Canales et al. (2018)

Conversion factor (dwt./wwt.) for L. nigrescens

0.35

0.35

0.35

Westermeier and Gómez (1996)

Nitrogen as a fraction of dwt for L. nigrescens

0.018

0.018

0.018

Pansch et al. (2008)

Equation = (conversion factor) x (nitrogen as dwt) x (production)

Annual nitrate nitrogen uptake (g N y−1)

1.12E + 09

8.29E + 08

2.92E + 08

 

Molar weight N (g mole−1)

1.40E + 01

1.40E + 01

1.40E + 01

 

Gibb’s free energy of formation HNO3 per mole Equivalence in Joules (J mole−1)

-7.99E + 04

-7.99E + 04

-7.99E + 04

http://www.wiredchemist.com/chemistry/data/entropies-inorganic

Equation = (annual nitrate nitrogen uptake) / (14 g mole−1) x (-79,990 J mole−1)

Annual Chemical potential energy uptake (J y−1)

6.37E + 12

4.73E + 12

1.66E + 12

 

Transformity HNO3 (sej J−1)

1.08E + 07

1.08E + 07

1.08E + 07

Transformity of NOx as HNO3 from Campbell (2003) calculated relative to the new baseline

Annual emergy uptake as NO3 (sej y−1)

6.88E + 19

5.11E + 19

1.80E + 19

 

6) Production L. nigrescens kelp forest

    

Production L. nigrescens kelp forest (g wwt. y−1)

1.77E + 11

1.32E + 11

4.63E + 10

Production estimates from Canales et al. (2018)

Conversion factor (dwt./wwt.) for L. nigrescens

0.35

0.35

0.35

Westermeier and Gómez (1996)

Energy (J g dwt−1) for L. nigrescens

17,000

17,000

17,000

Westermeier and Gómez (1996)

Equation = (production) x (conversion factor) x (energy)

Energy production Lessonia kelp forest (J m−2 y−1)

1.05E + 15

7.83E + 14

2.76E + 14

 

Transformity (sej J−1)

1.16E + 06

7.63E + 05

2.64E + 06

This study

Annual emergy (sej y−1) required for production

1.23E + 21

5.97E + 20

7.29E + 20

 

7) Fishing effort (F)

    

Number of fishermen

400

1810

1818

SERNAPESCA Caldera Port Office

Annual working hours (hours) per fisherman

1.19E + 03

1.19E + 03

1.19E + 03

This study

Energy cost per hour (kcal h−1)

1.04E + 02

1.04E + 02

1.04E + 02

Lu et al. (2006)

Energy (J kcal−1)

4186

4186

4186

Odum (1996)

Equation = (number of fishermen) x (annual working hours) x (kcal h−1) x (J kcal−1)

Annual energy cost in fishing effort

2.07E + 11

9.36E + 11

9.40E + 11

 

Transformity labor (sej J−1)

2.90E + 07

2.90E + 07

2.90E + 07

Transformity calculated for Chile from NEAD (2008), calculated relative to the new baseline

Annual emergy cost in fishing effort (sej y−1)

6.00E + 18

2.72E + 19

2.73E + 19

 

8) Landing (L)

    

Annual landing (g wwt. y−1)

2.42E + 10

6.65E + 10

2.66E + 10

http://www.sernapesca.cl/informes/estadisticas

Specific emergy (sej g−1 wwt)

4.32E + 09

1.75E + 09

9.76E + 09

This study, appendix 2

Annual emergy harvested (sej y−1)

1.05E + 20

1.16E + 20

2.59E + 20

 

Appendix 2

Calculation and data sources of the biomass, biomass emergy, specific emergy, the emergy harvested, the price per ton, the total weight of the  kelp harvested from the coastal intertidal of the Atacama region are shown in this table. The biomass (g wwt.) was calculated from Canales et al. (2018) and the specific emergy (sej gwwt−1.) is obtained from the biomass emergy (sej) (from Table 3) divided by the biomass (g wwt.) and the emergy harvested (sej y−1) is obtained by multiplying this Specific emergy by weight of the flow harvested (from Appendix 1) (gwwt. y−1).

Year

Biomass

Biomass emergy

Specific emergy

Flow harvested

Emergy harvested

Price/ton

Weight

(y)

(g wwt.)

(sej)

(sej g−1 wwt)

(g wwt. y−1)

(sej y−1)

(US$)

(Tonnes)

2000

2.24E + 11

9.69E + 20

4.32E + 09

2.42.E + 10

1.05E + 20

74.14

2.42E + 04

2014

2.12E + 11

3.70E + 20

1.75E + 09

6.65.E + 10

1.16E + 20

403.25

6.65E + 04

2018

4.63E + 10

4.52E + 20

9.76E + 09

2.66.E + 10

2.59E + 20

475.23

2.66E + 04

  1. Price/ton data from SERNAPESA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrios, F., Campbell, D.E. & González, J.E. Assessment of long-term changes in the emergy indexes of an intertidal kelp bed in northern Chile: implications for fisheries management. J Appl Phycol 33, 4149–4167 (2021). https://doi.org/10.1007/s10811-021-02574-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02574-1

Keywords

Navigation