Skip to main content

Advertisement

Log in

Projecting environmental suitability areas for the seaweed Gracilaria birdiae (Rhodophyta) in Brazil: Implications for the aquaculture pertaining to five environmentally crucial parameters

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Climate change has affected the distribution of economically important marine organisms worldwide. Seaweeds are among the most cultivated marine organisms in aquaculture and whose production has been increasing annually. Environmental Suitability Modeling (ESM) has currently been applied to predict the future distribution of economically important species concerning impacts from climate change. In this context, this study aimed to project how a global change scenario (RCP8.5) will affect the cultivation of the red seaweed Gracilaria birdiae in the Brazilian coast based on ESM. Species occurrence data were obtained from the literature and bioclimatic data were acquired from Bio-ORACLE. The modeling was performed by integrating the MaxEnt algorithm to R software. Significant differences between future and present environmental suitability for the seaweed cultivation were validated by applying the Friedman test. Our results revealed a significant increase in suitable areas for G. birdiae cultivation in the future, mainly in the coast of the Northeast and Southeast regions of Brazil. Our projection is consistent with the assumption that ocean warming will expand warmer water species to formerly colder regions. Temperature and salinity were not the most limiting factors for G. birdiae cultivation, whereas high nitrate concentrations may limit it. Our data revealed that environmental suitability areas for G. birdiae cultivation in Brazil will not be negatively affected by climate change. The seaweed G. birdiae shows a great potential for being cultivated in the Brazilian coast in the present and future, which could be a relevant source of income for coastal communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alemañ AE, Robledo D, Hayashi L (2019) Development of seaweed cultivation in Latin America: current trends and future prospects. Phycologia 58:462–471

    Article  Google Scholar 

  • Amaral ACZ, Corte GM, Filho JSR et al (2016) Brazilian sandy beaches: characteristics, ecosystem services, impacts, knowledge and priorities. Braz J Oceanogr 64:5–16

    Article  Google Scholar 

  • Assis J, Tyberghein L, Bosch S et al (2018) Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob Ecol Biogeogr 27:277–284

    Article  Google Scholar 

  • Bezerra AF, Marinho-Soriano E (2010) Cultivation of the red seaweed Gracilaria birdiae (Gracilariales, Rhodophyta) in tropical waters of northeast Brazil. Biomass Bioenerg 34:1813–1817

    Article  Google Scholar 

  • Bindoff NL, Cheung WWL, Kairo JG et al (2019) Changing Ocean, Marine Ecosystems, and Dependent Communities. In: Pörtner H-O, Roberts DC, Masson-Delmotte V et al (eds) IPCC Special Report: The Ocean and Cryosphere in a Changing Climate. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 447–587

    Google Scholar 

  • Borburema HDS, Graiff A, Karsten U, Marinho-Soriano E (2022a) Photobiological and biochemical responses of mangrove‑associated red macroalgae Bostrychia calliptera and Bostrychia montagnei to short‑term salinity stress related to climate change. Hydrobiologia. https://doi.org/10.1007/s10750-022-05006-4

  • Borburema HDS, Yokoya NS, Souza JMCd, Nauer F, Barbosa-Silva MS, Marinho-Soriano E (2022b) Ocean warming and increased salinity threaten Bostrychia (Rhodophyta) species from genetically divergent populations. Mar Environ Res 178:105662

    Article  CAS  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Article  Google Scholar 

  • Buschmann AH, Camus C, Infante J, Neori A, Israel Á, Hernández-González MC, Pereda SV, Gomez-Pinchetti JL, Golberg A, Tadmor-Shalev N, Critchley AT (2017) Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur J Phycol 52:391–406

    Article  Google Scholar 

  • Callaway R, Shinn AP, Grenfell SE et al (2012) Review of climate change impacts on marine aquaculture in the UK and Ireland. Aquat Conserv 22:389–421

    Article  Google Scholar 

  • Carneiro MAdA, Resende JFdJ, Oliveira SR, Fernandes FdO, Borburema HDdS, Barbosa-Silva MS, Ferreira ABG, Marinho-Soriano E (2020) Performance of the agarophyte Gracilariopsis tenuifrons in a multi-trophic aquaculture system with Litopenaeus vannamei using water recirculation. J Appl Phycol 33:481–490

    Article  Google Scholar 

  • Castro JZ, Yokoya NS (2019) Growth and biochemical responses of tropical and subtropical strains of Gracilaria domingensis (Gracilariales, Rhodophyta) to temperature and irradiance variations. J Appl Phycol 31:607–613

    Article  Google Scholar 

  • Cavanaugh JE, Neath AA (2019) The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdiscip Rev Comput Stat 11:e1460

    Article  Google Scholar 

  • Choi HG, Kim YS, Kim JH, Lee SJ, Park EJ, Ryu J, Nam KW (2006) Effects of temperature and salinity on the growth of Gracilaria verrucosa and G. chorda, with the potential for mariculture in Korea. J Appl Phycol 18:269–277

    Article  Google Scholar 

  • De Siqueira MF, Durigan G, de Marco JP, Peterson AT (2009) Something from nothing: using landscape similarity and ecological niche modeling to find rare plant species. J Nat Conserv 17:25–32

    Article  Google Scholar 

  • Duarte CM, Wu J, Xiao X, Bruhn A, Krause-Jensen D (2017) Can seaweed farming play a role in climate change mitigation and adaptation? Front Mar Sci 4:100

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • FAO (2020) The state of world fisheries and aquaculture - Sustainability in action. FAO, Rome

    Google Scholar 

  • Favoretto F, Sánchez C, Aburto-Oropeza O (2022) Warming and marine heatwaves tropicalize rocky reefs communities in the Gulf of California. Prog Oceanogr 206:102838

    Article  Google Scholar 

  • Fernandes FO, de Oliveira SR, Klein V, Araújo do Amaral Carneiro M, Colepicolo P, Marinho-Soriano E (2017) Effect of fertilization pulses on the production of Gracilaria birdiae seedlings under laboratory and field conditions. J Appl Phycol 29:695–705

    Article  CAS  Google Scholar 

  • Ferreira ABG, Carneiro MAA, Fernandes FO, Soriano EM (2021) Evaluation of ecosystem services provided by farmed and wild seaweeds. Rev Ibero-Americana Ciências Ambient 12:499–511

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Forster J, Radulovich R (2015) Seaweed and food security. In: Tiwari BK, Troy DJ (eds) Seaweed sustainability. Elsevier, Amsterdam, pp 289–313

    Chapter  Google Scholar 

  • Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M (2013) The global nitrogen cycle in the twenty first century. Philos Trans R Soc B 368:20130164

    Article  Google Scholar 

  • Gonçalves-Araujo R, De Souza MS, Mendes CRB, Tavano VM, Pollery RC, Garcia CAE (2012) Brazil-Malvinas confluence: effects of environmental variability on phytoplankton community structure. J Plankton Res 34:399–415

    Article  Google Scholar 

  • Gormley KS, Hull AD, Porter JS, Bell MC, Sanderson WG (2015) Adaptive management, international co-operation and planning for marine conservation hotspots in a changing climate. Mar Policy 53:54–66

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  PubMed  Google Scholar 

  • Harley CD, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA, Graham MH (2012) Effects of climate change on global seaweed communities. J Phycol 48:1064–1078

    Article  CAS  PubMed  Google Scholar 

  • Hayashi L, Reis RP (2012) Cultivation of the red algae Kappaphycus alvarezii in Brazil and its pharmacological potential. Rev Bras Farmacogn 22:748–752

    Article  CAS  Google Scholar 

  • Horta PA, Amancia E, Coimbra CS, Oliveira EC (2001) Considerações sobre a distribuição e origem da flora de macroalgas marinhas brasileiras. Hoehnea 28:243–265

    Google Scholar 

  • Inagaki KY, Pennino MG, Floeter SR, Hay ME, Longo GO (2020) Trophic interactions will expand geographically but be less intense as oceans warm. Glob Chang Biol 26:6805–6812

    Article  PubMed  Google Scholar 

  • IBGE (2021) Anuário Estatístico do Brasil. Ministry of Economics, Rio de Janeiro

    Google Scholar 

  • IPCC (2018) Summary for Policymakers. In: Masson-Delmontte V, Zhai P, Pörtner H-O, et al. (eds) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 3–24

  • IPCC (2019) Summary for policymakers. In: Pörtner H-O, Roberts DC, Masson-Delmotte V, et al. (eds) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 3–35

  • Ji Y, Xu Z, Zou D, Gao K (2016) Ecophysiological responses of marine macroalgae to climate change factors. J Appl Phycol 28:2953–2967

    Article  CAS  Google Scholar 

  • Jueterbock A, Tyberghein L, Verbruggen H, Coyer JA, Olsen JL, Hoarau G (2013) Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecol Evol 3:1356–1373

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur M, Saini KC, Ojah H, Sahoo R, Gupta K, Kumar A, Bast F (2022) Abiotic stress in algae: response, signaling and transgenic approaches. J Appl Phycol 34:1843–1869

    Article  Google Scholar 

  • Khan AH, Levac E, Van Guelphen L, Pohle G, Chmura GL (2018) The effect of global climate change on the future distribution of economically important macroalgae (seaweeds) in the northwest Atlantic. Facets 3:275–286

    Article  Google Scholar 

  • Lentz SJ, Limeburner R (1995) The Amazon River Plume during AMASSEDS: Spatial characteristics and salinity variability. J Geophys Res Oceans 100:2355–2375

    Article  Google Scholar 

  • Lobban CS, Harrison PJ (1997) Seaweed Ecology and Physiology. Cambridge University Press, New York

    Google Scholar 

  • Lyra GM, Nunes JMC, Pestana EM, de Matos JCG, Caires TA, Jesus PB, Costa EDS, Oliveira MC (2021) Diversity of Gracilariaceae (Rhodophyta) in Brazil: integrating morphological and molecular data. Phytotaxa 496:1–53

    Article  Google Scholar 

  • Mantri VA, Kambey CSB, Cottier-Cook EJ, Usandizaga S, Buschmann A, Chung IK, Liu T, Sondak CFA, Qi Z, Lim PE, Nguyen NV (2022) Overview of global Gracilaria production, the role of biosecurity policies and regulations in the sustainable development of this industry. Rev Aquac. https://doi.org/10.1111/raq.12761

  • Marinho-Soriano E, Carneiro MAA (2021) Macroalgas marinhas: Biologia, ecologia e importância econômica. In: Viana DL, Oliveira JEL, Hazin FHV, Souza MAC (eds) Ciências do mar: Dos oceanos do mundo ao Nordeste do Brasil. Design Publicações, Recife, pp 90–119

    Google Scholar 

  • Marinho-Soriano E, Nunes SO, Carneiro MAA, Pereira DC (2009) Nutrients’ removal from aquaculture wastewater using the macroalgae Gracilaria birdiae. Biomass Bioenerg 33:327–331

    Article  CAS  Google Scholar 

  • Marinho-Soriano E (2017) Historical context of commercial exploitation of seaweeds in Brazil. J Appl Phycol 29:665–671

    Article  Google Scholar 

  • De Martino R, Mariot LV, da Silva FZ, Simioni C, do Amaral Carneiro MA, Oliveira ER, Maraschin M, dos Santos AA, Hayashi L (2021) Effects of biofloc effluent in different regimes as a fertilizer for Kappaphycus alvarezii: indoor maintenance and sea cultivation. J Appl Phycol 33:3225–3237

  • Martins AP, Yokoya NS (2010) Intraspecific variations in colour morphs of Hypnea musciformis (Rhodophyta) in relation to nitrogen availability. Hoehnea 37:601–615

    Article  Google Scholar 

  • Martins NT, Macagnan LB, Cassano V, Gurgel CFD (2022) Brazilian marine phylogeography: a literature synthesis and analysis of barriers. Mol Ecol 31:5423–5439

    Article  CAS  PubMed  Google Scholar 

  • Melo-Merino SM, Reyes-Bonilla H, Lira-Noriega A (2020) Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol Modell 415:108837

    Article  Google Scholar 

  • de Miranda GEC, Yokoya NS, Fujii MT (2012) Effects of temperature, salinity and irradiance on carposporeling development of Hidropuntia caudata (Gracilariales, Rhodophyta). Braz J Pharmacogn 22:818–824

    Article  Google Scholar 

  • Molleri GS, Novo EMDM, Kampel M (2010) Space-time variability of the Amazon River plume based on satellite ocean color. Cont Shelf Res 30:342–352

    Article  Google Scholar 

  • Murcia S, Riul P, Mendez F, Rodriguez JP, Rosenfeld S, Ojeda J, Marambio J, Mansilla A (2020) Predicting distributional shifts of commercially important seaweed species in the Subantarctic tip of South America under future environmental changes. J Appl Phycol 32:2105–2114

    Article  Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Urlarte M, Anderson RP (2014) ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5:1198–1205

    Article  Google Scholar 

  • Mydlarz LD, Jones LE, Harvell CD (2006) Innate immunity, environmental drivers, and disease ecology of marine and freshwater invertebrates. Annu Rev Ecol Evol Syst 37:251–288

    Article  Google Scholar 

  • Nejrup LB, Pedersen MF (2012) The effect of temporal variability in salinity on the invasive red alga Gracilaria vermiculophylla. Eur J Phycol 47:254–263

    Article  Google Scholar 

  • Nogueira MCF, Henriques MB (2020) Large-scale versus family-sized system production: economic feasibility of cultivating Kappaphycus alvarezii along the southeastern coast of Brazil. J Appl Phycol 32:1893–1905

    Article  Google Scholar 

  • O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Peterson AT, Soberón J (2012) Species distribution modeling and ecological niche modeling: getting the concepts right. Nat Conserv 10:102–107

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  • Phillips SJ (2017) A Brief Tutorial on Maxent. Available at: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 12/02/2022.

  • Plastino EM, Oliveira EC (2002) Gracilaria birdiae (Gracilariales, Rhodophyta), a new species from the tropical South American Atlantic with a terete frond and deep spermatangial conceptacles. Phycologia 41:389–396

    Article  Google Scholar 

  • Pontes-da-Silva E, Magnusson WE, Sinervo B, Caetano GH, Miles DB, Colli GR, Diele-Viegas LM, Fenker J, Santos JC, Werneck FP (2018) Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard. J Therm Biol 73:50–60

    Article  PubMed  Google Scholar 

  • Porse H, Rudolph B (2017) The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. J Appl Phycol 29:2187–2200

    Article  Google Scholar 

  • Portugal AB, Carvalho L, Macedo Carniero PB, Rossi S, Soares MdO (2016) Increased anthropogenic pressure decreases species richness in tropical intertidal reefs. Mar Environ Res 120:44–54

    Article  CAS  PubMed  Google Scholar 

  • Prates APL, Gonçalves MA, Rosa MR (2012) Panorama da conservação dos ecossistemas costeiros e marinhos no Brasil. Brazilian Ministry of the Environment, Brasília.

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, New York

    Book  Google Scholar 

  • Rebours C, Marinho-Soriano E, Zertuche-González JA, Hayashi L, Vásquez JA, Kradolfer P, Soriano G, Ugarte R, Abreu MH, Bay-Larsen I, Hovelsrud G, Rødven R, Robledo D (2014) Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. J Appl Phycol 26:1939–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson NM, Nelson WA, Costello MJ, Sutherland J, Lundquist CJ (2017) A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front Mar Sci 4:421

    Article  Google Scholar 

  • Rybczyk JM, Day Jr JW, Yánez-Arancibia A, Cowan JH (2012) Global climate change and estuarine systems. In: Day Jr JW, Crump BC, Kemp WM, Yáñez-Arancibia A (eds) Estuarine Ecology, Second Edn. Wiley-Blackwell, Singapore, pp 497–519

  • Sinervo B, Mendez-De-La-Cruz F, Miles DB et al (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899

    Article  CAS  PubMed  Google Scholar 

  • Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196

    Article  CAS  PubMed  Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57:573–583

    Article  Google Scholar 

  • Takolander A, Leskinen E, Cabeza M (2017) Synergistic effects of extreme temperature and low salinity on foundational macroalga Fucus vesiculosus in the northern Baltic Sea. J Exp Mar Biol Ecol 495:110–118

    Article  CAS  Google Scholar 

  • Taylor GT, Muller-Karger FE, Thunell RC, Scranton MI, Astor Y, Varela R, Ghinaglia LT, Lorenzoni L, Fanning KA, Hameed S, Doherty O (2012) Ecosystem responses in the southern Caribbean Sea to global climate change. Proc Natl Acad Sci USA 109:19315–19320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trigueiro TG, Pereira DC, Martins AP, Colepicolo P, Marinho-Soiano E (2017) Cultivation of three color strains of Gracilaria domingensis in an integrated organic system. Int Aquat Res 9:225–233

    Article  Google Scholar 

  • Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerk O (2012) Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob Ecol Biogeogr 21:272–281

    Article  Google Scholar 

  • Ursi S, Costa VL, Hayashi L, Pereira RTL, Paula EJ, Plastino EM(2013) Intraspecific variation in Gracilaria birdiae (Gracilariales, Rhodophyta): Growth, and agar yield and quality of color strains under aquaculture. Bot Mar 56:241–248.

  • Vasquez VL, de Lima AA, dos Santos AP, Pinto MP (2021) Influence of spatial extent on habitat suitability models for primate species of Atlantic Forest. Ecol Inform 61:101179

    Article  Google Scholar 

  • Vilhena JCE (2021) Diatomáceas de praias da zona costeira oceânica do Amapá: considerações metodológicas, caracterização de comunidades e influência de fatores ambientais. MSc Thesis, Federal University of Amapá, Brazil 110 pp.

  • Wells ML, Trainer VL, Smayda TJ, Karlson BS, Trick CG, Kudela RM, Ishikawa A, Bernard S, Wulff A, Anderson DM, Cochlan WP (2015) Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae 49:68–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Westmeijer G, Everaert G, Pirlet H, De Clerk O, Vandegehuchte MB (2019) Mechanistic niche modelling to identify favorable growth sites of temperate macroalgae. Algal Res 41:101529

    Article  Google Scholar 

  • Wijffels S, Roemmich D, Monselesan D, Church J, Gilson J (2016) Ocean temperatures chronicle the ongoing warming of Earth. Nat Clim Change 6:116–118

    Article  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, Nceas Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Diversity Distrib 14:763–773

  • Wynne MJ (2017) A checklist of benthic marine algae of the tropical and subtropical western Atlantic: fourth revision. Nova Hedwigia Beih 145:1–202

    Google Scholar 

  • Yang Y, Chai Z, Wang Q, Chen W, He Z, Jiang S (2015) Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements. Algal Res 9:236–244

    Article  Google Scholar 

  • Zou DH, Gao KS (2013) Thermal acclimation of respiration and photosynthesis in the marine macroalga Gracilaria lemaneiformis (Gracilariales, Rhodophyta). J Phycol 49:61–68

    Article  PubMed  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

M. S. Barbosa-Silva: Conceptualization; Design of the work; Acquisition; Analysis; and Interpretation of data; Writing—original draft. H. D. S. Borburema: Writing—original draft; Writing—review and editing. F. O. Fernandes: Writing—original draft, Writing—review and editing. M. F. Nóbrega: Acquisition; Analysis; and Interpretation of data; Writing—review and editing. E. Marinho-Soriano: Conceptualization; Design of the work; Interpretation of data; Supervision; Writing—review and editing. All authors approved the version to be published and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Marcelle Stephanne Barbosa-Silva.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10811_2023_2920_MOESM1_ESM.pdf

Fig. S1 Line plot of Sensitivity vs 1- Specificity for species. Red line indicates the “fit” to the training data. Black line indicates the “fit” to random prediction. (PDF 145 KB)

Table S1 Occurrence records of Gracilaria birdiae. Coordinates are in decimal degrees. (PDF 112 KB)

10811_2023_2920_MOESM3_ESM.pdf

Table S2 Values of model evaluation statistics (AUC diff, AUC, and AIC) for all generated environmental suitability models for Gracilaria birdiae cultivation areas in Brazilian coast. AUC is the Area Under the ROC Curve and AIC is the Akaike Information Criterion. Model shown in bold was the selected one due to the highest and lowest AUC and AIC values, respectively. (PDF 91 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa-Silva, M.S., Borburema, H.D.S., Fernandes, F. et al. Projecting environmental suitability areas for the seaweed Gracilaria birdiae (Rhodophyta) in Brazil: Implications for the aquaculture pertaining to five environmentally crucial parameters. J Appl Phycol 35, 773–784 (2023). https://doi.org/10.1007/s10811-023-02920-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-02920-5

Keywords

Navigation