Skip to main content
Log in

Implantation rates of embryos generated from slow cooled human oocytes from young women are comparable to those of fresh and frozen embryos from the same age group

  • ASSISTED REPRODUCTION TECHNOLOGIES
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Previous reports of slow cooling of human mature oocytes have shown a reduced clinical efficiency relative to fresh oocytes. This study reports that equivalent fertilization and implantation rates to those obtained using fresh oocytes and cryopreserved embryos can be achieved with human mature oocytes dehydrated in 1.5 M propanediol and 0.2 M sucrose at 37°C and cryopreserved using slow cooling rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Noyes N, Boldt J, Nagy ZP. Oocyte cryopreservation: is it time to remove its experimental label? J Assist Reprod Genet. 2010;27(2–3):69–74.

    Article  PubMed  Google Scholar 

  2. Noyes N, Porcu E, Borini A. Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies. Reprod Biomed Online. 2009;18(6):769–76.

    Article  PubMed  CAS  Google Scholar 

  3. Yang D, Brown SE, Nguyen K, et al. Live birth after the transfer of human embryos developed from cryopreserved oocytes harvested before cancer treatment. Fertil Steril. 2007;87(6):1469.e1–1469.e4.

    Google Scholar 

  4. Porcu E, Venturoli S, Damiano G, et al. Healthy twins delivered after oocyte cryopreservation and bilateral ovariectomy for ovarian cancer. Reprod Biomed Online. 2008;17(2):265–7.

    Article  PubMed  CAS  Google Scholar 

  5. Cobo A, Meseguer M, Remohi J, et al. Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod. 2010;25(9):2239–46.

    Article  PubMed  Google Scholar 

  6. Borini A, Bianchi V, Bonu MA, et al. Evidence-based clinical outcome of oocyte slow cooling. Reprod Biomed Online. 2007;15(2):175–81.

    Article  PubMed  CAS  Google Scholar 

  7. Levi Setti PE, Albani E, Novara P, et al. Cryopreservation of supernumerary oocytes in IVF/ICSI cycles. Hum Reprod. 2006;21(2):370–5.

    Article  Google Scholar 

  8. Antinori M, Licata E, Dani G, et al. Cryotop vitrification of human oocytes results in high survival rate and healthy deliveries. Reprod Biomed Online. 2007;14(1):72–9.

    Article  PubMed  Google Scholar 

  9. Cobo A, Kuwayama M, Perez S, et al. Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the Cryotop method. Fertil Steril. 2008;89(6):1657–64.

    Article  PubMed  Google Scholar 

  10. Ubaldi F, Anniballo R, Romano S, et al. Cumulative ongoing pregnancy rate achieved with oocyte vitrification and cleavage stage transfer without embryo selection in a standard infertility program. Hum Reprod. 2010;25(5):1199–205.

    Article  PubMed  Google Scholar 

  11. Gook DA, Edgar DH. Human oocyte cryopreservation. Hum Reprod Update. 2007;13(6):591–605.

    Article  PubMed  Google Scholar 

  12. Fabbri R, Porcu E, Marsella T, et al. Human oocyte cryopreservation: new perspectives regarding oocyte survival. Hum Reprod. 2001;16(3):411–6.

    Article  PubMed  CAS  Google Scholar 

  13. Bianchi V, Coticchio G, Distratis V, et al. Early cleavage delay in cryopreserved human oocytes. Hum Reprod. 2005;20 Suppl 1:i54.

    Google Scholar 

  14. Nottola SA, Macchiarelli G, Coticchio G, et al. Ultrastructure of human mature oocytes after slow cooling cryopreservation using different sucrose concentrations. Hum Reprod. 2007;22(4):1123–33.

    Article  PubMed  CAS  Google Scholar 

  15. Parmegiani L, Cognigni GE, Bernardi S, et al. Freezing within 2 h from oocyte retrieval increases the efficiency of human oocyte cryopreservation when using a slow freezing/rapid thawing protocol with high sucrose concentration. Hum Reprod. 2008;23(8):1771–7.

    Article  PubMed  CAS  Google Scholar 

  16. Konc J, Kanyo K, Varga E, et al. Births resulting from oocyte cryopreservation using a slow freezing protocol with propanediol and sucrose. Syst Biol Reprod Med. 2008;54(4–5):205–10.

    Article  PubMed  CAS  Google Scholar 

  17. Winslow K, Yang D, Blohm P, et al. Oocyte cryopreservation/a 3 year follow up of sixteen births. Fertil Steril. 2001;76(3,Suppl 1):S120. Abst P-28.

    Article  Google Scholar 

  18. Chen ZJ, Li M, Li Y, et al. Effects of sucrose concentration on the developmental potential of human frozen-thawed oocytes at different stages of maturity. Hum Reprod. 2004;19(10):2345–9.

    Article  PubMed  CAS  Google Scholar 

  19. Bianchi V, Coticchio G, Distratis V, et al. Differential sucrose concentration during dehydration (0.2 mol/l) and rehydration (0.3 mol/l) increases the implantation rate of frozen human oocytes. Reprod Biomed Online. 2007;14(1):64–71.

    Article  PubMed  CAS  Google Scholar 

  20. Borini A, Levi Setti PE, Anserini P, et al. Multicenter observational study on slow-cooling oocyte cryopreservation: clinical outcome. Fertil Steril. 2010;94(5):1662–8.

    Article  PubMed  Google Scholar 

  21. Yang D, Winslow K, Blohm P, et al. Oocyte donation using cryopreserved donor oocytes. Fertil Steril. 2002;78(3, Suppl 1):S14. Abst O-37.

    Article  Google Scholar 

  22. Ebner T, Moser M, Sommergruber M, et al. Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development: a review. Hum Reprod Update. 2003;9(3):251–62.

    Article  PubMed  CAS  Google Scholar 

  23. Hunter J, Bernard A, Fuller B, et al. Plasma membrane water permeabilities of human oocytes: the temperature dependence of water movement in individual cells. J Cell Physiol. 1992;150(1):175–9.

    Article  PubMed  CAS  Google Scholar 

  24. Hunter JE, Bernard A, Fuller BJ, et al. Measurements of the membrane water permeability (Lp) and its temperature dependence (activation energy) in human fresh and failed-to- fertilize oocytes and mouse oocyte. Cryobiology. 1992;29(2):240–9.

    Article  PubMed  CAS  Google Scholar 

  25. Newton H, Fisher J, Arnold JR, et al. Permeation of human ovarian tissue with cryoprotective agents in preparation for cryopreservation. Hum Reprod. 1998;13(2):376–80.

    Article  PubMed  CAS  Google Scholar 

  26. Bourne H, Richings N, Harari O, et al. The use of intracytoplasmic sperm injection for the treatment of severe and extreme male infertility. Reprod Fertil Dev. 1995;7:237–45.

    Article  PubMed  CAS  Google Scholar 

  27. Lawler C, Baker HW, Edgar DH. Relationships between timing of syngamy, female age and implantation potential in human in vitro-fertilised oocytes. Reprod Fertil Dev. 2007;19(3):482–7.

    Article  PubMed  Google Scholar 

  28. Edgar DH, Bourne H, Speirs AL, et al. A quantitative analysis of the impact of cryopreservation on the implantation potential of human early cleavage stage embryos. Hum Reprod. 2000;15:175–9.

    Article  PubMed  CAS  Google Scholar 

  29. Edgar DH, Karani J, Gook DA. Increasing dehydration of human cleavage-stage embryos prior to slow cooling significantly increases cryosurvival. Reprod Biomed Online. 2009;19(4):521–5.

    Article  PubMed  Google Scholar 

  30. Gook DA, Hale L, Edgar DH. Live birth following transfer of a cryopreserved embryo generated from a cryopreserved oocyte and a cryopreserved sperm: case report. J Assist Reprod Genet. 2007;24(1):43–5.

    Article  PubMed  Google Scholar 

  31. Borini A, Sciajno R, Bianchi V, et al. Cinical outcome of oocyte cryopreservation after slow cooling with a protocol utilizing a high sucrose concentration. Hum Reprod. 2006;21(2):512–7.

    Article  PubMed  CAS  Google Scholar 

  32. Barritt J, Luna M, Duke M, et al. Report of four donor-recipient oocyte cryopreservation cycles resulting in high pregnancy and implantation rates. Fertil Steril. 2007;87(1):189.e13–189.e17.

    Google Scholar 

  33. Ferraretti AP, Lappi M, Magli MC, et al. Factors affecting thawed oocyte viability suggest a customized policy of embryo transfer. Fertil Steril. 2010;94(4):1308–13.

    Google Scholar 

  34. La Sala GB, Nicoli A, Villani MT, et al. Outcome of 518 salvage oocyte-cryopreservation cycles performed as a routine procedure in an in vitro fertilization program. Fertil Steril. 2006;86(5):1423–7.

    Article  PubMed  Google Scholar 

  35. De Santis L, Cino I, Rabellotti E, et al. Oocyte cryopreservation: clinical outcome of slow-cooling protocols differing in sucrose concentration. Reprod Biomed Online. 2007;14(1):57–63.

    Article  PubMed  Google Scholar 

  36. Chamayou S, Alecci C, Ragolia C, et al. Comparison of in-vitro outcomes from cryopreserved oocytes and sibling fresh oocytes. Reprod Biomed Online. 2006;12(6):730–6.

    Article  PubMed  CAS  Google Scholar 

  37. Magli MC, Lappi M, Ferraretti AP, et al. Impact of oocyte cryopreservation on embryo development. Fertil Steril. 2010;93(2):510–6.

    Article  PubMed  Google Scholar 

  38. Parmegiani L, Garello C, Granella F, et al. Long-term cryostorage does not adversely affect the outcome of oocyte thawing cycles. Reprod Biomed Online. 2009;19(3):374–9.

    Article  PubMed  CAS  Google Scholar 

  39. Leibo SP. Water permeability and its activation energy of fertilized and unfertilized mouse ova. J Membr Biol. 1980;53(3):179–88.

    Article  PubMed  CAS  Google Scholar 

  40. Grifo JA, Noyes N. Delivery rate using cryopreserved oocytes is comparable to conventional in vitro fertilization using fresh oocytes: potential fertility preservation for female cancer patients. Fertil Steril. 2009;93(2):391–6.

    Article  PubMed  Google Scholar 

  41. Gook DA, Osborn SM, Bourne H, et al. Fertilization of human oocytes following cryopreservation; normal karyotypes and absence of stray chromosomes. Hum Reprod. 1994;9(4):684–91.

    PubMed  CAS  Google Scholar 

  42. Parmegiani L, Bertocci F, Garello C, et al. Efficiency of human oocyte slow freezing: results from five assisted reproduction centres. Reprod Biomed Online. 2009;18(3):352–9.

    Article  PubMed  CAS  Google Scholar 

  43. Ferraretti AP, Lappi M, Magli MC, et al. Factors affecting thawed oocyte viability suggest a customized policy of embryo transfer. Fertil Steril. 2010;94(4):1308–13.

    Article  PubMed  Google Scholar 

  44. Coticchio G, Distratis V, Bianchi V, et al. Fertilization and early developmental ability of cryopreserved human oocytes is not affected compared to sibling fresh oocytes. Fertil Steril. 2007;88 Suppl 1:P-700.

    Google Scholar 

  45. Cobo A, Romero JL, Perez S, et al. Storage of human oocytes in the vapor phase of nitrogen. Fertil Steril. 2010b.

  46. Katayama KP, Stehlik J, Kuwayama M, et al. High survival rate of vitrified human oocytes results in clinical pregnancy. Fertil Steril. 2003;80(1):223–4.

    Article  PubMed  Google Scholar 

  47. Nagy ZP, Chang CC, Shapiro DB, et al. Clinical evaluation of the efficiency of an oocyte donation program using egg cryo-banking. Fertil Steril. 2009;92(2):520–6.

    Article  PubMed  Google Scholar 

  48. Garcia JI, Noriega-Portella L, Noriega-Hoces L. Efficacy of oocyte vitrification combined with blastocyst stage transfer in an egg donation program. Hum Reprod. 2011;26:782–90.

    Article  PubMed  Google Scholar 

  49. Trokoudes KM, Pavlides C, Zhang X. Comparison outcome of fresh and vitrified donor oocytes in an egg-sharing donation program. Fertil Steril. 2011;95(6):1996–2000.

    Article  PubMed  Google Scholar 

  50. Schoolcraft WB, Keller JL, Schlenker T. Excellent embryo quality obtained from vitrified oocytes. Reprod Biomed Online. 2009;19(6):820–3.

    Article  PubMed  Google Scholar 

  51. Noyes N, Knopman J, Labella P, et al. Oocyte cryopreservation outcomes including pre-cryopreservation and post-thaw meiotic spindle evaluation following slow cooling and vitrification of human oocytes. Fertil Steril. 2010b.

  52. Smith GD, Serafini PC, Fioravanti J, et al. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification. Fertil Steril. 2010;94(6):2088–95.

    Article  PubMed  Google Scholar 

  53. Bonetti A, Cervi M, Tomei F, et al. Ultrastructural evaluation of human metaphase II oocytes after vitrification: closed versus open devices. Fertil Steril. 2011;95(3):928–35.

    Article  PubMed  Google Scholar 

  54. McDonald CA, Valluzo L, Chuang L, et al. Nitrogen vapor shipment of vitrified oocytes: time for caution, in Fertil Steril. 2011: United States. p. 2628–30.

  55. Vajta G, Nagy ZP. Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod Biomed Online. 2006;12(6):779–96.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We wish to thank the laboratory staff and medical team at Reproductive Services Royal Women’s Hospital and Melbourne IVF for their assistance with these cycles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debra A. Gook.

Additional information

Capsule Equivalent implantation rates for slow cooled mature oocytes dehydrated in 1.5 M propanediol and 0.2 M sucrose at 37°C and fresh oocytes from young women.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gook, D.A., Edgar, D.H. Implantation rates of embryos generated from slow cooled human oocytes from young women are comparable to those of fresh and frozen embryos from the same age group. J Assist Reprod Genet 28, 1171–1176 (2011). https://doi.org/10.1007/s10815-011-9678-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-011-9678-6

Keywords

Navigation