Skip to main content
Log in

Gene-environment interaction among GSTT1, PON2 polymorphisms and organic solvents on gestational age in a Chinese women cohort

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To investigate interactions on gestational age among two environmental risk factors and four maternal genetic polymorphisms: organic solvents, passive smoking, CYP1A1 rs4646903 (MspI), EPHX1 rs2234922 (His139Arg), GSTT1 and PON2 rs12026 (Ala148Gly).

Methods

A pregnant women cohort was conducted at Beijing Yanshan Petrochemical Corporation, and 1,097 mothers with live singleton births were included in analysis. Generalized Multifactor Dimensionality Reduction (GMDR) method was used to explore interactions among these factors with adjustment for important potential confounders. Multiple linear regression models were used to estimate the association of interaction with gestational age.

Results

A three-factor model of organic solvents, GSTT1 and PON2 rs12026 had the highest testing balanced accuracy (57.05 %) and best cross-validation consistency (10/10). Compared with organic solvents unexposed mothers with GSTT1 non-null genotype and PON2 rs12026 CC genotype, organic solvents exposed mothers with GSTT1 null genotype and PON2 rs12026 CG + GG genotype had the largest reduction in gestational age (−0.36 weeks, 95%CI: −0.70 to −0.02). The significant reductions in different groups were from 0.24 weeks to 0.36 weeks.

Conclusions

Maternal genetic susceptibility GSTT1 and PON2 rs12026 could significantly modify the association of organic solvents with gestational age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CI:

confidence interval

CYP1A1:

cytochrome P-450 1A1

EPHX1:

epoxide hydrolase 1

GMDR:

generalized multifactor dimensionality reduction

GSTT1:

glutathione S-transferase theta-1

hCG:

human chorionic gonadotrophin

OSHA:

Occupational Safety and Health Administration

PON2:

paraoxonase2

References

  1. Callaghan WM, MacDorman MF, Rasmussen SA, Qin C, Lackritz EM. The contribution of preterm birth to infant mortality rates in the United States. Pediatrics. 2006;118(4):1566–73. doi:10.1542/peds.2006-0860.

    Article  PubMed  Google Scholar 

  2. Crider KS, Whitehead N, Buus RM. Genetic variation associated with preterm birth: a HuGE review. Genet Med. 2005;7(9):593–604. doi:10.109701.gim.0000187223.69947.db.

    Article  CAS  PubMed  Google Scholar 

  3. Llop S, Ballester F, Estarlich M, Esplugues A, Rebagliato M, Iniguez C. Preterm birth and exposure to air pollutants during pregnancy. Environ Res. 2010;110(8):778–85. doi:10.1016/j.envres.2010.09.009.

    Article  CAS  PubMed  Google Scholar 

  4. Forand SP, Lewis-Michl EL, Gomez MI. Adverse birth outcomes and maternal exposure to trichloroethylene and tetrachloroethylene through soil vapor intrusion in New York State. Environ Health Perspect. 2012;120(4):616–21. doi:10.1289/ehp.1103884.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ahmed P, Jaakkola JJ. Exposure to organic solvents and adverse pregnancy outcomes. Hum Reprod. 2007;22(10):2751–7.

    Article  CAS  PubMed  Google Scholar 

  6. Slama R, Thiebaugeorges O, Goua V, Aussel L, Sacco P, Bohet A, et al. Maternal personal exposure to airborne benzene and intrauterine growth. Environ Health Perspect. 2009;117(8):1313–21. doi:10.1289/ehp.0800465.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Miyake Y, Tanaka K, Arakawa M. Active and passive maternal smoking during pregnancy and birth outcomes: the Kyushu Okinawa Maternal and Child Health Study. BMC Pregnancy Childbirth. 2013. doi:10.1186/1471-2393-13-157.

    PubMed Central  PubMed  Google Scholar 

  8. Salmasi G, Grady R, Jones J, McDonald SD. Environmental tobacco smoke exposure and perinatal outcomes: a systematic review and meta-analyses. Acta Obstet Gynecol Scand. 2010;89(4):423–41. doi:10.3109/00016340903505748.

    Article  PubMed  Google Scholar 

  9. Stillerman KP, Mattison DR, Giudice LC, Woodruff TJ. Environmental exposures and adverse pregnancy outcomes: a review of the science. Reprod Sci. 2008;15(7):631–50. doi:10.1177/1933719108322436.

    Article  PubMed  Google Scholar 

  10. Wang X, Zuckerman B, Pearson C, Kaufman G, Chen C, Wang G, et al. Maternal cigarette smoking, metabolic gene polymorphism, and infant birth weight. JAMA. 2002;287(2):195–202.

    Article  CAS  PubMed  Google Scholar 

  11. Nukui T, Day RD, Sims CS, Ness RB, Romkes M. Maternal/newborn GSTT1 null genotype contributes to risk of preterm, low birthweight infants. Pharmacogenetics. 2004;14(9):569–76.

    Article  CAS  PubMed  Google Scholar 

  12. Wu T, Hu Y, Chen C, Yang F, Li Z, Fang Z, et al. Passive smoking, metabolic gene polymorphisms, and infant birth weight in a prospective cohort study of Chinese women. Am J Epidemiol. 2007;166(3):313–22. doi:10.1093/aje/kwm090.

    Article  PubMed  Google Scholar 

  13. Chen D, Hu Y, Chen C, Yang F, Fang Z, Wang L, et al. Polymorphisms of the paraoxonase gene and risk of preterm delivery. Epidemiology. 2004;15(4):466–70.

    Article  PubMed  Google Scholar 

  14. Tsai HJ, Liu X, Mestan K, Yu Y, Zhang S, Fang Y, et al. Maternal cigarette smoking, metabolic gene polymorphisms, and preterm delivery: new insights on GxE interactions and pathogenic pathways. Hum Genet. 2008;123(4):359–69. doi:10.1007/s00439-008-0485-9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Wang X, Chen D, Niu T, Wang Z, Wang L, Ryan L, et al. Genetic susceptibility to benzene and shortened gestation: evidence of gene-environment interaction. Am J Epidemiol. 2000;152(8):693–700.

    Article  CAS  PubMed  Google Scholar 

  16. Occupational exposure to benzene, Docket no.H-059c, 29 CFR part 1910 (1985).

  17. Kawajiri K, Nakachi K, Imai K, Yoshii A, Shinoda N, Watanabe J. Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P450IA1 gene. FEBS Lett. 1990;263(1):131–3.

    Article  CAS  PubMed  Google Scholar 

  18. Hassett C, Aicher L, Sidhu JS, Omiecinski CJ. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet. 1994;3(3):421–8.

    Article  CAS  PubMed  Google Scholar 

  19. Nelson HH, Wiencke JK, Christiani DC, Cheng TJ, Zuo ZF, Schwartz BS, et al. Ethnic differences in the prevalence of the homozygous deleted genotype of glutathione S-transferase theta. Carcinogenesis. 1995;16(5):1243–5.

    Article  CAS  PubMed  Google Scholar 

  20. Sanghera DK, Aston CE, Saha N, Kamboh MI. DNA polymorphisms in two paraoxonase genes (PON1 and PON2) are associated with the risk of coronary heart disease. Am J Hum Genet. 1998;62(1):36–44. doi:10.1086/301669.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lou XY, Chen GB, Yan L, Ma JZ, Zhu J, Elston RC, et al. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. Am J Hum Genet. 2007;80(6):1125–37. doi:10.1086/518312.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Chen D, Cho SI, Chen C, Wang X, Damokosh AI, Ryan L, et al. Exposure to benzene, occupational stress, and reduced birth weight. Occup Environ Med. 2000;57(10):661–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Qin X, Wu Y, Wang W, Liu T, Wang L, Hu Y, et al. Low organic solvent exposure and combined maternal-infant gene polymorphisms affect gestational age. Occup Environ Med. 2008;65(7):482–7. doi:10.1136/oem.2007.032474.

    Article  CAS  PubMed  Google Scholar 

  24. Moore JH, Ritchie MD. The challenges of whole-genome approaches to common diseases. JAMA. 2004;291(13):1642–3. doi:10.1001/jama.291.13.1642.

    Article  CAS  PubMed  Google Scholar 

  25. Chevrier C, Dananche B, Bahuau M, Nelva A, Herman C, Francannet C, et al. Occupational exposure to organic solvent mixtures during pregnancy and the risk of non-syndromic oral clefts. Occup Environ Med. 2006;63(9):617–23. doi:10.1136/oem.2005.024067.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kumar S. Occupational exposure associated with reproductive dysfunction. J Occup Health. 2004;46(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  27. Erexson GL, Wilmer JL, Kligerman AD. Sister chromatid exchange induction in human lymphocytes exposed to benzene and its metabolites in vitro. Cancer Res. 1985;45(6):2471–7.

    CAS  PubMed  Google Scholar 

  28. Yager JW, Eastmond DA, Robertson ML, Paradisin WM, Smith MT. Characterization of micronuclei induced in human lymphocytes by benzene metabolites. Cancer Res. 1990;50(2):393–9.

    CAS  PubMed  Google Scholar 

  29. Lazutka JR, Lekevicius R, Dedonyte V, Maciuleviciute-Gervers L, Mierauskiene J, Rudaitiene S, et al. Chromosomal aberrations and sister-chromatid exchanges in Lithuanian populations: effects of occupational and environmental exposures. Mutat Res. 1999;445(2):225–39.

    Article  CAS  PubMed  Google Scholar 

  30. Kovacic P, Jacintho JD. Reproductive toxins: pervasive theme of oxidative stress and electron transfer. Curr Med Chem. 2001;8(7):863–92.

    Article  CAS  PubMed  Google Scholar 

  31. Murata M, Tsujikawa M, Kawanishi S. Oxidative DNA damage by minor metabolites of toluene may lead to carcinogenesis and reproductive dysfunction. Biochem Biophys Res Commun. 1999;261(2):478–83. doi:10.1006/bbrc.1999.1041.

    Article  CAS  PubMed  Google Scholar 

  32. Schroder KR, Wiebel FA, Reich S, Dannappel D, Bolt HM, Hallier E. Glutathione-S-transferase (GST) theta polymorphism influences background SCE rate. Arch Toxicol. 1995;69(7):505–7.

    Article  CAS  PubMed  Google Scholar 

  33. Xu X, Wiencke JK, Niu T, Wang M, Watanabe H, Kelsey KT, et al. Benzene exposure, glutathione S-transferase theta homozygous deletion, and sister chromatid exchanges. Am J Ind Med. 1998;33(2):157–63.

    Article  CAS  PubMed  Google Scholar 

  34. Seidegard J, Vorachek WR, Pero RW, Pearson WR. Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci U S A. 1988;85(19):7293–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sprenger R, Schlagenhaufer R, Kerb R, Bruhn C, Brockmoller J, Roots I, et al. Characterization of the glutathione S-transferase GSTT1 deletion: discrimination of all genotypes by polymerase chain reaction indicates a trimodular genotype-phenotype correlation. Pharmacogenetics. 2000;10(6):557–65.

    Article  CAS  PubMed  Google Scholar 

  36. Ng CJ, Wadleigh DJ, Gangopadhyay A, Hama S, Grijalva VR, Navab M, et al. Paraoxonase-2 is a ubiquitously expressed protein with antioxidant properties and is capable of preventing cell-mediated oxidative modification of low density lipoprotein. J Biol Chem. 2001;276(48):44444–9. doi:10.1074/jbc.M105660200.

    Article  CAS  PubMed  Google Scholar 

  37. Horke S, Witte I, Wilgenbus P, Kruger M, Strand D, Forstermann U. Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation. Circulation. 2007;115(15):2055–64. doi:10.1161/circulationaha.106.681700.

    Article  CAS  PubMed  Google Scholar 

  38. Stoltz DA, Ozer EA, Recker TJ, Estin M, Yang X, Shih DM, et al. A common mutation in paraoxonase-2 results in impaired lactonase activity. J Biol Chem. 2009;284(51):35564–71. doi:10.1074/jbc.M109.051706.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

We sincerely thank all of the participants and their families for participating in this study, and we gratefully acknowledge the invaluable assistance of clinical, field and laboratory staff who contributed to making this work possible. This study is supported in part by grants R825818 from the Environmental Protection Agency, 1R01 HD32505-01 from the National Institute of Child Health and Human Development, 1R01 ES08337-01 from the National Institute of Environmental Health Science and 1R01 OH03027 from the National Institute of Occupational Safety and Health.

Ethical issue

This study was approved by the ethics committee of Peking University Health Science Center.

All participants gave their informed content prior to participating in this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghua Hu or Dafang Chen.

Additional information

Capsule Organic solvents exposure and maternal genetic variants: GSTT1 and PON2 rs12026 have an interaction on gestational age in Chinese women.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Fang, K., Wang, W. et al. Gene-environment interaction among GSTT1, PON2 polymorphisms and organic solvents on gestational age in a Chinese women cohort. J Assist Reprod Genet 31, 881–888 (2014). https://doi.org/10.1007/s10815-014-0256-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0256-6

Keywords

Navigation