Skip to main content
Log in

What is the contribution of embryo-endometrial asynchrony to implantation failure?

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The synchronized development of a viable embryo and a receptive endometrium is critical for successful implantation to take place. The aim of this paper is to review current thinking about the importance of embryo-endometrial synchrony in in vitro fertilization (IVF).

Methods

Detailed review of the literature on embryo-endometrial synchrony.

Results

By convention, the time when the blastocyst first attaches and starts to invade into the endometrium has been defined as the ‘window of implantation’. The term window of implantation can be misleading when it is used to imply that there is a single critical window in time that determines whether implantation will be successful or not. Embryo maturation and endometrial development are two independent continuous processes. Implantation occurs when the two tissues fuse and pregnancy is established. A key concept in understanding this event is developmental ‘synchrony’, defined as when the early embryo and the uterus are both developing at the same rate such that they will be ready to commence and successfully continue implantation at the same time. Many different events, including controlled ovarian hyperstimulation as routinely used in IVF, can potentially disrupt embryo-endometrial synchrony. There is some evidence in humans that implantation rates are significantly reduced when embryo-endometrial development asynchrony is greater than 3 days (±1.5 days).

Conclusions

Embryo-endometrial synchrony is critical for successful implantation. There is an unmet need for improved precision in the evaluation of endometrial development to permit better synchronization of the embryo and the endometrium prior to implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lessey BA, Killam AP, Metzger DA, Haney AF, Greene GL, McCarty KS. Immunohistochemical analysis of human uterine estrogen and progesterone receptors throughout the menstrual cycle. J Clin Endocrinol Metab. 1988;67:334–40.

    Article  CAS  PubMed  Google Scholar 

  2. Kodaman PH, Taylor HS. Hormonal regulation of implantation. Obstet Gynecol Clin N Am. 2004;31:745–66.

    Article  Google Scholar 

  3. Young SL. Oestrogen and progesterone action on endometrium: a translational approach to understanding endometrial receptivity. Reprod BioMed Online. 2013;27:497–505.

    Article  CAS  PubMed  Google Scholar 

  4. Fritz MA, Westfahl PK, Graham RL. The effect of luteal phase estrogen antagonism on endometrial development and luteal function in women. J Clin Endocrinol Metab. 1987;65:1006–13.

    Article  CAS  PubMed  Google Scholar 

  5. Lutjen P, Trounson A, Leeton J, Findlay J, Wood C, Renou P. The establishment and maintenance of pregnancy using in vitro fertilization and embryo donation in a patient with primary ovarian failure. Nature. 1984;307:174–5.

    Article  CAS  PubMed  Google Scholar 

  6. Paulson RJ. Hormonal induction of endometrial receptivity. Fertil Steril. 2011;96:530–5.

    Article  CAS  PubMed  Google Scholar 

  7. Navot D, Laufer N, Kopolovic J, Rabinowitz R, Birkenfeld A, Lewin A, et al. Artificially induced endometrial cycles and establishment of pregnancies in the absence of ovaries. N Engl J Med. 1986;314:806–11.

    Article  CAS  PubMed  Google Scholar 

  8. Remohí J, Gutiérrez A, Cano F, Ruiz A, Simón C, Pellicer A. Long oestradiol replacement in an oocyte donation programme. Hum Reprod. 1995;10:1387–91.

    Article  PubMed  Google Scholar 

  9. Sauer MV, Miles RA, Dahmoush L, Paulson RJ, Press M, Moyer D. Evaluating the effect of age on endometrial responsiveness to hormone replacement therapy: a histologic ultrasonographic, and tissue receptor analysis. J Assist Reprod Genet. 1993;10:47–52.

    Article  CAS  PubMed  Google Scholar 

  10. Hofmann GE, Thie J, Scott RT, Navot D. Endometrial thickness is predictive of histologic endometrial maturation in women undergoing hormone replacement for ovum donation. Fertil Steril. 1996;66:380–3.

    Article  CAS  PubMed  Google Scholar 

  11. Sherman MI, Wudl LW. The implanting mouse blastocyst. In: Poste G, Nicholson GL, editors. The cell surface in embryogenesis and development. Amsterdam: Elsevier; 1976. p. 81–125.

    Google Scholar 

  12. Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, et al. Physiological and molecular determinants of embryo implantation. Mol Asp Med. 2013;34:939–80.

    Article  CAS  Google Scholar 

  13. Næslund G, Lundkvist Ö, Nilsson BO. Transmission electron microscopy of mouse blastocysts activated and growth-arrested in vivo and in vitro. Anat Embryol. 1980;159:33–48.

    Article  PubMed  Google Scholar 

  14. Psychoyos A. Uterine receptivity for nidation. Ann N Y Acad Sci. 1986;476:36–42.

    Article  CAS  PubMed  Google Scholar 

  15. Macpherson AM, Rogers PA, Beaton LA. Vascular response in a non-uterine site to implantation-stage embryos following interspecies transfers between the rat, mouse, and guinea-pig. Cell Tissue Res. 1989;258:417–23.

    Article  CAS  PubMed  Google Scholar 

  16. Runner MN. Development of mouse eggs in the anterior chamber of the eye. Anat Rec. 1947;98:1–17.

    Article  CAS  PubMed  Google Scholar 

  17. Rogers PAW, Macpherson AM, Beaton LA. Vascular response in a non-uterine site to implantation-stage embryos in the rat and guinea-pig: in vivo and ultrastructural studies. Cell Tissue Res. 1988;254:217–24.

    Article  CAS  PubMed  Google Scholar 

  18. Fawcett DW. The development of mouse ova under the capsule of the kidney. Anat Rec. 1950;108:71–91.

    Article  CAS  PubMed  Google Scholar 

  19. Kirby DR. The development of mouse blastocysts transplanted to the scrotal and cryptorchid testis. J Anat. 1963;97:119–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kirby DR. Development of the mouse blastocyst transplanted to the spleen. J Reprod Fertil. 1963;5:1–12.

    Article  CAS  PubMed  Google Scholar 

  21. Dahab A, Aburass R, Shawkat W, Babgi R, Essa O, Mujallid R. Full-term extrauterine abdominal pregnancy: a case report. J Med Case Rep. 2011;5:531–1.

  22. Mpogoro F, Gumodoka B, Kihunrwa A, Massinde A. Managing a live advanced abdominal twin pregnancy. Ann Med Health Sci Res. 2013;3:113–5.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lundkvist Ö, Nilsson BO. Endometrial ultrastructure in the early uterine response to blastocysts and artificial deciduogenic stimuli in rats. Cell Tissue Res. 1982;225:355–64.

    Article  CAS  PubMed  Google Scholar 

  24. Lawson R. Research applications of embryo transfer in sheep and goats. In: Betteridge K, editor. Embryo transfer in farm animals, vol. 16. Ottawa: Canada Department of Agriculture; 1977. p. 72–8.

  25. Garrett JE, Geisert RD, Zavy MT, Morgan GL. Evidence for maternal regulation of early conceptus growth and development in beef cattle. J Reprod Fertil. 1988;84:437–46.

    Article  CAS  PubMed  Google Scholar 

  26. Teklenburg G, Salker M, Molokhia M, Lavery S, Trew G, Aojanepong T, et al. Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PLoS One. 2010;5:e10258–8.

  27. Wilcox AJ, Baird DD, Weinberg CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med. 1999;340:1796–9.

    Article  CAS  PubMed  Google Scholar 

  28. Rogers PA. Oocyte donation. In: Wood C, Trounson A, editors. Clinical in vitro fertilization and embryo transfer. Berlin: Springer; 1988. p. 143.

    Google Scholar 

  29. Rogers PA, Murphy CR. Uterine receptivity for implantation: human studies. In: Yoshinaga K, editor. Blastocyst implantation. Serono Symposia: Adams Publishing Group; 1989. p. 231–8.

    Google Scholar 

  30. Navot D, Scott RT, Droesch K, Veeck LL, Liu HC, Rosenwaks Z. The window of embryo transfer and the efficiency of human conception in vitro. Fertil Steril. 1991;55:114–8.

    Article  CAS  PubMed  Google Scholar 

  31. Mandelbaum J, Junca AM, Plachot M, Cohen J, Alvarez S, Cornet D, et al. The implantation window in humans after fresh or frozen-thawed embryo transfers. In: Maschiach S, Ben-Rafel Z, Laufer N, Schenker JG, editors. Advances in assisted reproductive technologies. New York: Plenum; 1990. p. 729–35.

    Chapter  Google Scholar 

  32. Ubaldi F, Bourgain C, Tournaye H, Smitz J, Van Steirteghem A, Devroey P. Endometrial evaluation by aspiration biopsy on the day of oocyte retrieval in the embryo transfer cycles in patients with serum progesterone rise during the follicular phase. Fertil Steril. 1997;67:521–6.

    Article  CAS  PubMed  Google Scholar 

  33. Kolibianakis E, Bourgain C, Albano C, Osmanagaoglu K, Smitz J, Van Steirteghem A, et al. Effect of ovarian stimulation with recombinant follicle-stimulating hormone, gonadotropin releasing hormone antagonists, and human chorionic gonadotropin on endometrial maturation on the day of oocyte pick-up. Fertil Steril. 2002;78:1025–9.

    Article  PubMed  Google Scholar 

  34. Van Vaerenbergh I, Van Lommel L, Ghislain V, In’t Veld P, Schuit F, Fatemi HM, et al. In GnRH antagonist/rec-FSH stimulated cycles, advanced endometrial maturation on the day of oocyte retrieval correlates with altered gene expression. Hum Reprod. 2009;24:1085–91.

    Article  PubMed  CAS  Google Scholar 

  35. Imbar T, Hurwitz A. Synchronization between endometrial and embryonic age is not absolutely crucial for implantation. Fertil Steril. 2004;82:472–4.

    Article  PubMed  Google Scholar 

  36. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Ross R. Contrasting patterns in in vitro fertilization pregnancy rates among fresh autologous, fresh oocyte donor, and cryopreserved cycles with the use of day 5 or day 6 blastocysts may reflect differences in embryo-endometrium synchrony. Fertil Steril. 2008;89:20–6.

    Article  PubMed  Google Scholar 

  37. Mirkin S, Nikas G, Hsiu JG, Diaz J, Oehninger S. Gene expression profiles and structural/functional features of the peri-implantation endometrium in natural and gonadotropin-stimulated cycles. J Clin Endocrinol Metab. 2004;89:5742–52.

    Article  CAS  PubMed  Google Scholar 

  38. Kolb BA, Paulson RJ. The luteal phase of cycles utilizing controlled ovarian hyperstimulation and the possible impact of this hyperstimulation on embryo implantation. Am J Obstet Gynecol. 1997;176:1262–9.

    Article  CAS  PubMed  Google Scholar 

  39. Noyes R, Hertig A, Rock J. Dating the endometrial biopsy. Fertil Steril. 1950;1:21.

    Article  Google Scholar 

  40. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol. 1975;122:262–3.

    CAS  PubMed  Google Scholar 

  41. Gibson M, Badger GJ, Byrn F, Lee KR, Korson R, Trainer TD. Error in histologic dating of secretory endometrium: variance component analysis. Fertil Steril. 1991;56:242–7.

    Article  CAS  PubMed  Google Scholar 

  42. Medicine TPCotASfR. Optimal evaluation of the infertile female. Fertil Steril. 2006;86:S264–7.

    Google Scholar 

  43. Noyes RW, Haman JO. Accuracy of endometrial dating; correlation of endometrial dating with basal body temperature and menses. Fertil Steril. 1953;4:504–17.

    Article  CAS  PubMed  Google Scholar 

  44. Duggan MA, Brashert P, Ostor A, Scurry J, Billson V, Kneafsey P, et al. The accuracy and interobserver reproducibility of endometrial dating. Pathology. 2001;33:292–7.

    Article  CAS  PubMed  Google Scholar 

  45. Deligdisch L. Hormonal pathology of the endometrium. Mod Pathol 0000; 13:285–294.

  46. Sher G, Herbert C, Maassarani G, Jacobs MH. Assessment of the late proliferative phase endometrium by ultrasonography in patients undergoing in-vitro fertilization and embryo transfer (IVF/ET). Hum Reprod. 1991;6:232–7.

    CAS  PubMed  Google Scholar 

  47. Bustillo M, Krysa LW, Coulam CB. Implantation: uterine receptivity in an oocyte donation programme. Hum Reprod. 1995;10:442–5.

    CAS  PubMed  Google Scholar 

  48. Fanchin R, Righini C, Ayoubi J-M, Olivennes F, de Ziegler D, Frydman R. New look at endometrial echogenicity: objective computer-assisted measurements predict endometrial receptivity in in vitro fertilization–embryo transfer. Fertil Steril. 2000;74:274–81.

    Article  CAS  PubMed  Google Scholar 

  49. Glissant A, de Mouzon J, Frydman R. Ultrasound study of the endometrium during in vitro fertilization cycles. Fertil Steril. 1985;44:786–90.

    Article  CAS  PubMed  Google Scholar 

  50. Gonen Y, Casper RF. Prediction of implantation by the sonographic appearance of the endometrium during controlled ovarian stimulation for in vitro fertilization (IVF). J In Vitro Fert Embryo Transf. 1990;7:146–52.

    Article  CAS  PubMed  Google Scholar 

  51. Check JH, Nowroozi K, Choe J, Lurie D, Dietterich C. The effect of endometrial thickness and echo pattern on in vitro fertilization outcome in donor oocyte-embryo transfer cycle. Fertil Steril. 1993;59:72–5.

    Article  CAS  PubMed  Google Scholar 

  52. Richter KS, Bugge KR, Bromer JG, Levy MJ. Relationship between endometrial thickness and embryo implantation, based on 1,294 cycles of in vitro fertilization with transfer of two blastocyst-stage embryos. Fertil Steril. 2007;87:53–9.

    Article  PubMed  Google Scholar 

  53. Fleischer AC, Herbert CM, Sacks GA, Wentz AC, Entman SS, James Jr AE. Sonography of the endometrium during conception and nonconception cycles of in vitro fertilization and embryo transfer. Fertil Steril. 1986;46:442–7.

    Article  CAS  PubMed  Google Scholar 

  54. Khalifa E, Brzyski RG, Oehninger S, Acosta AA, Muasher SJ. Sonographic appearance of the endometrium: the predictive value for the outcome of in-vitro fertilization in stimulated cycles. Hum Reprod. 1992;7:677–80.

    CAS  PubMed  Google Scholar 

  55. Momeni M, Rahbar MH, Kovanci E. A meta-analysis of the relationship between endometrial thickness and outcome of in vitro fertilization cycles. J Hum Reprod Sci. 2011;4:130–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Li T-C, Nuttall L, Klentzeris L, Cooke ID. How well does ultrasonographic measurement of endometrial thickness predict the results of histological dating? Hum Reprod. 1992;7:1–5.

    Article  CAS  PubMed  Google Scholar 

  57. Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006;12:731–46.

    Article  PubMed  Google Scholar 

  58. Robertson M, Ritz J. Biology and clinical relevance of human natural killer cells. Blood 1990;76;2421–38.

  59. Bulmer JN, Morrison L, Longfellow M, Ritson A, Pace D. Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod. 1991;6:791–8.

    CAS  PubMed  Google Scholar 

  60. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med. 2006;12:1065–74.

    Article  CAS  PubMed  Google Scholar 

  61. Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz F, et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med. 2003;198:1201–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Quenby S, Bates M, Doig T, Brewster J, Lewis-Jones DI, Johnson PM, et al. Pre-implantation endometrial leukocytes in women with recurrent miscarriage. Hum Reprod. 1999;14:2386–91.

    Article  CAS  PubMed  Google Scholar 

  63. Seshadri S, Sunkara SK. Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Hum Reprod Update. 2014;20:429–38.

    Article  PubMed  Google Scholar 

  64. Lessey BA, Castelbaum AJ, Wolf L, Greene W, Paulson M, Meyer WR, et al. Use of integrins to date the endometrium. Fertil Steril. 2000;73:779–87.

    Article  CAS  PubMed  Google Scholar 

  65. Casals G, Ordi J, Creus M, Fábregues F, Carmona F, Casamitjana R, et al. Expression pattern of osteopontin and αvβ3 integrin during the implantation window in infertile patients with early stages of endometriosis. Hum Reprod. 2012;27:805–13.

    Article  CAS  PubMed  Google Scholar 

  66. Gonzalez RR, Palomino A, Boric A, Vega M, Devoto L. A quantitative evaluation of α1, α4, αV and β3 endometrial integrins of fertile and unexplained infertile women during the menstrual cycle. A flow cytometric appraisal. Hum Reprod. 1999;14:2485–92.

    Article  CAS  PubMed  Google Scholar 

  67. Ordi J, Creus M, Casamitjana R, Cardesa A, Vanrell J, Balasch J. Endometrial pinopode and alphavbeta3 integrin expression is not impaired in infertile patients with endometriosis. J Assist Reprod Genet. 2003;20:465–73.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Coughlan C, Sinagra M, Ledger W, Li TC, Laird S. Endometrial integrin expression in women with recurrent implantation failure after in vitro fertilization and its relationship to pregnancy outcome. Fertil Steril. 2013;100:825–30. e822.

    Article  CAS  PubMed  Google Scholar 

  69. Ordi J, Creus M, Quintó L, Casamitjana R, Cardesa A, Balasch J. Within-subject between-cycle variability of histological dating, αvβ3 integrin expression, and pinopod formation in the human endometrium. J Clin Endocrinol Metab. 2003;88:2119–25.

    Article  CAS  PubMed  Google Scholar 

  70. Dimitriadis E, Nie G, Hannan NJ, Paiva P, Salamonsen LA. Local regulation of implantation at the human fetal-maternal interface. Int J Dev Biol. 2010;54:313–22.

    Article  CAS  PubMed  Google Scholar 

  71. Aghajanova L, Altmäe S, Bjuresten K, Hovatta O, Landgren B-M, Stavreus-Evers A. Disturbances in the LIF pathway in the endometrium among women with unexplained infertility. Fertil Steril. 2009;91:2602–10.

    Article  CAS  PubMed  Google Scholar 

  72. Hambartsoumian E. Endometrial leukemia inhibitory factor (LIF) as a possible cause of unexplained infertility and multiple failures of implantation. Am J Reprod Immunol. 1998;39:137–43.

    Article  CAS  PubMed  Google Scholar 

  73. Laird SM, Tuckerman EM, Dalton CF, Dunphy BC, Li TC, Zhang X. The production of leukaemia inhibitory factor by human endometrium: presence in uterine flushings and production by cells in culture. Hum Reprod. 1997;12:569–74.

    Article  CAS  PubMed  Google Scholar 

  74. Lédée-Bataille N, Laprée-Delage G, Taupin J-L, Dubanchet S, Frydman R, Chaouat G. Concentration of leukaemia inhibitory factor (LIF) in uterine flushing fluid is highly predictive of embryo implantation. Hum Reprod. 2002;17:213–8.

    Article  PubMed  Google Scholar 

  75. Steck T, Giess R, Suetterlin MW, Bolland M, Wiest S, Poehls UG, et al. Leukaemia inhibitory factor (LIF) gene mutations in women with unexplained infertility and recurrent failure of implantation after IVF and embryo transfer. Eur J Obstet Gynecol Reprod Biol. 2004;112:69–73.

    Article  CAS  PubMed  Google Scholar 

  76. Brinsden PR, Alam V, de Moustier B, Engrand P. Recombinant human leukemia inhibitory factor does not improve implantation and pregnancy outcomes after assisted reproductive techniques in women with recurrent unexplained implantation failure. Fertil Steril. 2009;91:1445–7.

    Article  CAS  PubMed  Google Scholar 

  77. Koot YEM, Teklenburg G, Salker MS, Brosens JJ, Macklon NS. Molecular aspects of implantation failure. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2012;1822:1943–50.

    Article  CAS  Google Scholar 

  78. Ponnampalam AP, Weston GC, Trajstman AC, Susil B, Rogers PA. Molecular classification of human endometrial cycle stages by transcriptional profiling. Mol Hum Reprod. 2004;10:879–93.

    Article  CAS  PubMed  Google Scholar 

  79. Talbi S, Hamilton AE, Vo KC, Tulac S, Overgaard MT, Dosiou C, et al. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology. 2006;147:1097–121.

    Article  CAS  PubMed  Google Scholar 

  80. Borthwick JM, Charnock-Jones DS, Tom BD, Hull ML, Teirney R, Phillips SC, et al. Determination of the transcript profile of human endometrium. Mol Hum Reprod. 2003;9:19–33.

    Article  CAS  PubMed  Google Scholar 

  81. Carson DD, Lagow E, Thathiah A, Al-Shami R, Farach-Carson MC, Vernon M, et al. Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening. Mol Hum Reprod. 2002;8:871–9.

    Article  CAS  PubMed  Google Scholar 

  82. Horcajadas JA, Riesewijk A, Martı́n J, Cervero A, Mosselman S, Pellicer A, et al. Global gene expression profiling of human endometrial receptivity. J Reprod Immunol. 2004;63:41–9.

    Article  CAS  PubMed  Google Scholar 

  83. Kao LC, Tulac S, Lobo S, Imani B, Yang JP, Germeyer A, et al. Global gene profiling in human endometrium during the window of implantation. Endocrinology. 2002;143:2119–38.

    Article  CAS  PubMed  Google Scholar 

  84. Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod. 2010;82:791–801.

    Article  CAS  PubMed  Google Scholar 

  85. Mirkin S, Arslan M, Churikov D, Corica A, Diaz JI, Williams S, et al. In search of candidate genes critically expressed in the human endometrium during the window of implantation. Hum Reprod. 2005;20:2104–17.

    Article  CAS  PubMed  Google Scholar 

  86. Riesewijk A, Martin J, van Os R, Horcajadas JA, Polman J, Pellicer A, et al. Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology. Mol Hum Reprod. 2003;9:253–64.

    Article  CAS  PubMed  Google Scholar 

  87. Díaz-Gimeno P, Horcajadas JA, Martínez-Conejero JA, Esteban FJ, Alamá P, Pellicer A, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011;95:50–60. e15.

    Article  PubMed  CAS  Google Scholar 

  88. Díaz-Gimeno P, Ruiz-Alonso M, Blesa D, Bosch N, Martínez-Conejero JA, Alamá P, et al. The accuracy and reproducibility of the endometrial receptivity array is superior to histology as a diagnostic method for endometrial receptivity. Fertil Steril. 2013;99:508–17.

    Article  PubMed  Google Scholar 

  89. Noci I, Borri P, Coccia ME, Criscuoli L, Scarselli G, Messeri G, et al. Hormonal patterns, steroid receptors and morphological pictures of endometrium in hyperstimulated IVF cycles. Eur J Obstet Gynecol Reprod Biol. 1997;75:215–20.

    Article  CAS  PubMed  Google Scholar 

  90. Lass A, Peat D, Avery S, Brinsden P. Histological evaluation of endometrium on the day of oocyte retrieval after gonadotrophin-releasing hormone agonist-follicle stimulating hormone ovulation induction for in-vitro fertilization. Hum Reprod. 1998;13:3203–5.

    Article  CAS  PubMed  Google Scholar 

  91. Meyer WR, Novotny DB, Fritz MA, Beyler SA, Wolf LJ, Lessey BA. Effect of exogenous gonadotropins on endometrial maturation in oocyte donors. Fertil Steril. 1999;71:109–14.

    Article  CAS  PubMed  Google Scholar 

  92. Bourgain C, Ubaldi F, Tavaniotou A, Smitz J, Van Steirteghem AC, Devroey P. Endometrial hormone receptors and proliferation index in the periovulatory phase of stimulated embryo transfer cycles in comparison with natural cycles and relation to clinical pregnancy outcome. Fertil Steril. 2002;78:237–44.

    Article  PubMed  Google Scholar 

  93. Seif MW, Pearson JM, Ibrahim ZHZ, Buckley CH, Aplin JD, Buck P, et al. Endometrium in in-vitro fertilization cycles: morphological and functional differentiation in the implantation phase. Hum Reprod. 1992;7:6–11.

    CAS  PubMed  Google Scholar 

  94. Evans J, Hannan NJ, Hincks C, Rombauts LJF, Salamonsen LA. Defective soil for a fertile seed? Altered endometrial development is detrimental to pregnancy success. PLoS One. 2012;7, e53098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Papanikolaou EG, Bourgain C, Kolibianakis E, Tournaye H, Devroey P. Steroid receptor expression in late follicular phase endometrium in GnRH antagonist IVF cycles is already altered, indicating initiation of early luteal phase transformation in the absence of secretory changes. Hum Reprod. 2005;20:1541–7.

    Article  CAS  PubMed  Google Scholar 

  96. Chai J, Lee K-F, Ng EHY, Yeung WSB, Ho P-C. Ovarian stimulation modulates steroid receptor expression and spheroid attachment in peri-implantation endometria: studies on natural and stimulated cycles. Fertil Steril. 2011;96:764–8.

    Article  CAS  PubMed  Google Scholar 

  97. Liu Y, Lee K-F, Ng EHY, Yeung WSB, Ho P-C. Gene expression profiling of human peri-implantation endometria between natural and stimulated cycles. Fertil Steril. 2008;90:2152–64.

    Article  CAS  PubMed  Google Scholar 

  98. Pandey S, Shetty A, Hamilton M, Bhattacharya S, Maheshwari A. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update. 2012;18:485–503.

    Article  PubMed  Google Scholar 

  99. Shih W, Rushford DD, Bourne H, Garrett C, McBain JC, Healy DL, et al. Factors affecting low birthweight after assisted reproduction technology: difference between transfer of fresh and cryopreserved embryos suggests an adverse effect of oocyte collection. Hum Reprod. 2008;23:1644–53.

    Article  CAS  PubMed  Google Scholar 

  100. Healy DL, Breheny S, Halliday J, Jaques A, Rushford D, Garrett C, et al. Prevalence and risk factors for obstetric haemorrhage in 6730 singleton births after assisted reproductive technology in Victoria Australia. Hum Reprod. 2010;25:265–74.

    Article  CAS  PubMed  Google Scholar 

  101. Maheshwari A, Pandey S, Shetty A, Hamilton M, Bhattacharya S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril. 2012;98:368–77. e369.

    Article  PubMed  Google Scholar 

  102. Evans J, Hannan NJ, Edgell TA, Vollenhoven BJ, Lutjen PJ, Osianlis T, et al. Fresh versus frozen embryo transfer: backing clinical decisions with scientific and clinical evidence. Hum Reprod Update. 2014.

  103. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311:171–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Blumenfeld Z. Why more is less and less is more when it comes to ovarian stimulation. J Assist Reprod Genet. 2015;32:1713–9.

    Article  PubMed  Google Scholar 

  105. Bosch E, Valencia I, Escudero E, Crespo J, Simón C, Remohí J, et al. Premature luteinization during gonadotropin-releasing hormone antagonist cycles and its relationship with in vitro fertilization outcome. Fertil Steril. 2003;80:1444–9.

    Article  PubMed  Google Scholar 

  106. Griesinger G, Mannaerts B, Andersen CY, Witjes H, Kolibianakis EM, Gordon K. Progesterone elevation does not compromise pregnancy rates in high responders: a pooled analysis of in vitro fertilization patients treated with recombinant follicle-stimulating hormone/gonadotropin-releasing hormone antagonist in six trials. Fertil Steril. 2013.

  107. Venetis CA, Kolibianakis EM, Bosdou JK, Tarlatzis BC. Progesterone elevation and probability of pregnancy after IVF: a systematic review and meta-analysis of over 60 000 cycles. Hum Reprod Update. 2013;19:433–57.

    Article  CAS  PubMed  Google Scholar 

  108. Bosch E, Labarta E, Crespo J, Simón C, Remohí J, Jenkins J, et al. Circulating progesterone levels and ongoing pregnancy rates in controlled ovarian stimulation cycles for in vitro fertilization: analysis of over 4000 cycles. Hum Reprod. 2010;25:2092–100.

    Article  CAS  PubMed  Google Scholar 

  109. Labarta E, Martínez-Conejero JA, Alamá P, Horcajadas JA, Pellicer A, Simón C, et al. Endometrial receptivity is affected in women with high circulating progesterone levels at the end of the follicular phase: a functional genomics analysis. Hum Reprod. 2011;26:1813–25.

    Article  CAS  PubMed  Google Scholar 

  110. Van Vaerenbergh I, Fatemi HM, Blockeel C, Van Lommel L, In’t Veld P, Schuit F, et al. Progesterone rise on HCG day in GnRH antagonist/rFSH stimulated cycles affects endometrial gene expression. Reprod BioMed Online. 2011;22:263–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Tinn Teh.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Funding

Wan-Tinn Teh received National Health and Medical Research Council Medical Postgraduate Scholarship (No. 1055814) for her PhD study.

Additional information

Capsule Embryo-endometrial synchrony is critical for successful implantation. There is an unmet need for improved precision in the evaluation of endometrial development to permit better synchronization of the embryo and the endometrium prior to implantation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teh, WT., McBain, J. & Rogers, P. What is the contribution of embryo-endometrial asynchrony to implantation failure?. J Assist Reprod Genet 33, 1419–1430 (2016). https://doi.org/10.1007/s10815-016-0773-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0773-6

Keywords

Navigation