Skip to main content
Log in

Towards Probabilistic Formal Analysis of SATS-Simultaneously Moving Aircraft (SATS-SMA)

Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

The objective of NASA’s Small Aircraft Transportation System (SATS) Concept of Operations (ConOps) is to facilitate high volume operation of advanced small aircraft operating in non-towered, non-radar airports. This system can provide improved and accessible air travel at a lower cost. Given the safety-critical nature of SATS, its analysis accuracy is extremely important. However, the commonly used analysis techniques, like pilot/computer simulation and traditional model checking, do not ascertain an error-free and complete verification of SATS due to the wide range of possibilities involved in SATS or the inability to capture the randomized and unpredictable aspects of the SATS ConOps environment in their models. Another limitation of these studies is that a limited speed range was used in the analysis. To overcome these limitations, we propose to formulate the SATS ConOps as a fully synchronous and probabilistic model, i.e., SATS-SMA, that supports simultaneously moving aircraft. The distinguishing features of our work include the preservation of safety of aircraft while providing a precise timing model, which is closer to reality compared to the previous hybrid analyses. Important insights related to the aircraft take-off and landing operations during the instrument meteorological conditions are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alur, R., Henzinger, T.A.: Reactive modules. Form. Methods Syst. Des. 15(1), 7–48 (1999)

    Article  Google Scholar 

  2. Arons, T., Pnueli, A., Ruah, S., Xu, Y., Zuck, L.: Parameterized verification with automatically computed inductive assertions? In: Computer Aided Verification, vol. 2102, pp. 221–234. Springer (2001)

  3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time markov chains. In: Computer Aided Verification, vol. 1102, pp. 269–276. Springer (1996)

  4. Bai, C., Zhang, X.: Aircraft landing scheduling in the small aircraft transportation system. In: Computational and Information Sciences, pp. 1019–1022. IEEE (2011)

  5. Baier, C.: On algorithmic verification methods for probabilistic systems. Technical Report, Universität Mannheim (1998)

  6. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  7. Baier, C., Katoen, J.P., Hermanns, H.: Approximative symbolic model checking of continuous-time markov chains. In: Concurrency Theory, vol. 1664, pp. 146–161. Springer (1999)

  8. Balakrishnan, H., Chandran, B.: Scheduling aircraft landings under constrained position shifting. In: Guidance, Navigation, and Control Conference and Exhibit. American Institute of Aeronautics and Astronautics (2006)

  9. Basagiannis, S., Petridou, S., Alexiou, N., Papadimitriou, G., Katsaros, P.: Quantitative analysis of a certified e-mail protocol in mobile environments: a probabilistic model checking approach. Comput. Secur. 30(4), 257–272 (2011)

    Article  Google Scholar 

  10. Baxley, B., Williams, D., Consiglio, M., Conway, S., Adams, C., Abbott, T.: The small aircraft transportation system, higher volume operations off-nominal operations. In: Aviation, Technology, Integration, and Operations Conference. American Institute of Aeronautics and Astronautics (2005)

  11. Baxley, B., Williams, D., Consiglio, M., Adams, C., Abbott, T.: Small aircraft transportation system, higher volume operations concept and research summary. J Aircr 45(6), 1825–1834 (2008)

    Article  Google Scholar 

  12. Beauquier, D.: On probabilistic timed automata. Theor. Comput. Sci. 292(1), 65–84 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carreño, V.: Concept for multiple operations at non-tower non-radar airports during instrument meteorological conditions. In: Digital Avionics Systems Conference, pp. 5.B.1–1–5.B.1–9. IEEE (2003)

  14. Carreño, V., Muñoz, C.: Safety verification of the small aircraft transportation system concept of operations. In: Aviation, Technology, Integration, and Operations Conference. American Institute of Aeronautics and Astronautics (2005)

  15. Cheng, A., Niktab, H., Walston, M.: Timing analysis of small aircraft transportation system (SATS). In: Embedded and Real-Time Computing Systems and Applications, pp. 58–67. IEEE (2012)

  16. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  17. Consiglio, M., Conway, S., Adams, C., Syed, H.: SATS HVO procedures for priority landings and mixed VFR/IFR operations. In: Digital Avionics Systems Conference, pp. 13.B.2–1–13.B.2–8. IEEE (2005)

  18. Consiglio, M., Carreno, V.A., Williams, D.M., Muñoz, C.: Conflict prevention and separation assurance in small aircraft transportation systems. J. Aircr. 45(2), 353–358 (2008)

    Article  Google Scholar 

  19. Consiglio, M., Sturdy, J.: Monte carlo analysis of airport throughput and traffic delays using self separation procedures. In: International Council of the Aeronautical Sciences (2006)

  20. Demri, S., Goranko, V., Lange, M.: Temporal Logics in Computer Science: Finite-State Systems. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  21. Dou, L., David, L., Jesse, J., Peter, K.: A small aircraft transportation system (SATS) demand model. Technical Reports NASA/CR-2001-210874, NASA Technical Reports Server (2001)

  22. Dowek, G., Muñoz, C., Carreño, V.: Abstract model of the SATS concept of operations: initial results and recommendations. Technical Reports NASA/TM-2004-213006, NASA Technical Reports Server (2004)

  23. Fedeli, A., Fummi, F., Pravadelli, G.: Properties incompleteness evaluation by functional verification. IEEE Trans Comput 56(4), 528–544 (2007)

    Article  MathSciNet  Google Scholar 

  24. Gariel, M., Spieser, K., Frazzoli, E.: On the statistics and predictability of go-arounds. In: Intelligent Data Understanding, pp. 75–91 (2011)

  25. Greco, A., Magyarits, S., Doucett, S.: Air traffic control studies of small aircraft transportation system operations. In: Digital Avionics Systems Conference. pp. 13.A.4–1–13.A.4–12. IEEE (2005)

  26. Green Jr, D.F., Jones, D.R.: Runway safety monitor algorithm for runway incursion detection and alerting. Technical Reports NASA/CR-2002-211416, NASA Technical Reports Server (2002)

  27. Güdemann, M., Ortmeier, F.: A framework for qualitative and quantitative formal model-based safety analysis. In: High-Assurance Systems Engineering, pp. 132–141. IEEE (2010)

  28. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Form. Asp. Comput. 6(5), 512–535 (1994)

    Article  MATH  Google Scholar 

  29. Harine, G., Marie, R., Puigjaner, R., Trivedi, K.: Loss formulas and their application to optimization for cellular networks. IEEE Trans. Veh. Technol. 50(3), 664–673 (2001)

    Article  Google Scholar 

  30. Holmes, B.J., Durham, M.H., Tarry, S.E.: Small aircraft transportation system concept and technologies. J. Aircr. 41(1), 26–35 (2004)

    Article  Google Scholar 

  31. Johnson, C.: Final Report: Review of the BFU Überlingen accident report. Contract C/1.369/HQ/SS/04. Eurocontrol (2004)

  32. Johnson, T.T., Mitra, S.: Parameterized verification of distributed cyber-physical systems: an aircraft landing protocol case study. In: Cyber-Physical Systems, pp. 161–170. IEEE (2012)

  33. Johnson, T.T., Mitra, S.: A small model theorem for rectangular hybrid automata networks. In: Formal Techniques for Distributed Systems, vol. 7273, pp. 18–34. Springer (2012)

  34. Johnson, T.T., Mitra, S.: Invariant synthesis for verification of parameterized cyber-physical systems with applications to aerospace systems. In: Infotech at Aerospace Conference. American Institute of Aeronautics and Astronautics (2013)

  35. Kelly, W.E., Valasek, J., Wilt, D., Deaton, J., Alter, K., Davis, R.: The design and evaluation of a traffic situation display for a SATS self controlled area. In: Digital Avionics Systems Conference, pp. 13.A.3–1–13.A.3–12. IEEE (2005)

  36. Kulkarni, V.: Modeling and Analysis of Stochastic Systems. Taylor & Francis Group, CRC Press (2016)

  37. Kwiatkowska, M., Norman, G., Parker, D.: Controller dependability analysis by probabilistic model checking. Control Eng. Pract. 15(11), 1427–1434 (2007)

    Article  Google Scholar 

  38. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Formal Methods for Performance Evaluation, vol. 4486, pp. 220–270. Springer (2007)

  39. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Computer Aided Verification, vol. 6806, pp. 585–591. Springer (2011)

  40. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Symbolic Model Checker. http://www.prismmodelchecker.org (2016)

  41. Lakin, M.R., Parker, D., Cardelli, L., Kwiatkowska, M., Phillips, A.: Design and analysis of DNA strand displacement devices using probabilistic model checking. J. R. Soc. Interface 9(72), 1470–1485 (2012)

    Article  Google Scholar 

  42. Lam, W.K.: Hardware Design Verification: Simulation and Formal Method-Based Approaches. Prentice Hall Modern Semiconductor Design Series. Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  43. Lin, C.E., Hung, T.W., Chen, H.Y.: TCAS algorithm for general aviation based on ADS-B. J. Aerosp. Eng. 230(9), 1569–1591 (2016)

    Google Scholar 

  44. Muñoz, C., Dowek, G., Carreño, V.: Modeling and verification of an air traffic concept of operations. Softw. Eng. Notes 29(4), 175–182 (2004)

    Article  Google Scholar 

  45. Muñoz, C., Carreño, V., Dowek, G.: Formal analysis of the operational concept for the small aircraft transportation system. In: Rigorous Development of Complex Fault-Tolerant Systems, vol. 4157, pp. 306–325. Springer (2006)

  46. Muñoz, C., Dowek, G.: Hybrid verification of an air traffic operational concept. In: Leveraging Applications of Formal Methods, Verification, and Validation, pp. 1–13. IEEE/NASA (2005)

  47. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In: Automated Deduction, vol. 607, pp. 748–752. Springer (1992)

  48. Peters, M.: Capacity analysis of the NASA Langley airport management module. In: Digital Avionics Systems Conference, pp. 4.D.6–1–4.D.6–12. IEEE (2005)

  49. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, Hoboken (2014)

    MATH  Google Scholar 

  50. Sardar, M.U.: Towards probabilistic formal analysis of SATS-Simultaneously Moving Aircraft (SATS-SMA). (2016) http://save.seecs.nust.edu.pk/projects/SATS-SMA

  51. Sardar, M.U., Afaq, N., Hoque, K.A., Johnson, T.T., Hasan, O.: Probabilistic formal verification of the SATS concept of operation. In: NASA Formal Methods, vol. 9690, pp. 191–205. Springer (2016)

  52. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nord. J. Comput. 2(2), 250–273 (1995)

    MathSciNet  MATH  Google Scholar 

  53. Shortle, J.F., Xie, R., Chen, C., Donohue, G.L.: Estimating collision probabilities of landing airplanes at non-towered aiports. In: Transportation Research Board (2003)

  54. Siminiceanu, R.I., Ciardo, G.: Formal verification of the nasa runway safety monitor. Int. J. Softw. Tools Technol. Transf. 9(1), 63–76 (2007)

    Article  Google Scholar 

  55. Umeno, S., Lynch, N.: Proving safety properties of an aircraft landing protocol using I/O automata and the PVS theorem prover: a case study. In: Formal Methods, vol. 4085, pp. 64–80. Springer (2006)

  56. Viken, S.A., Brooks, F.M.: Demonstration of four operating capabilities to enable a small aircraft transportation system. In: Digital Avionics Systems Conference, pp. 13.A.1–1–13.A.1–16. IEEE (2005)

  57. von Essen, C., Giannakopoulou, D.: Analyzing the next generation airborne collision avoidance system. In: Tools and Algorithms for the Construction and Analysis of Systems, vol. 8413, pp. 620–635. Springer (2014)

  58. Williams, D.M., Consiglio, M., Murdoch, J., Adams, C.: Flight technical error analysis of the SATS higher volume operations simulation and flight experiments. In: Digital Avionics Systems Conference, pp. 13.B.1–1–13.B.1–12. IEEE (2005)

  59. Williams, D.M.: Point-to-Point! validation of the small aircraft transportation system higher volume operations concept. In: International Council of the Aeronautical Sciences (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usama Sardar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardar, M.U., Afaq, N., Hasan, O. et al. Towards Probabilistic Formal Analysis of SATS-Simultaneously Moving Aircraft (SATS-SMA). J Autom Reasoning 60, 85–105 (2018). https://doi.org/10.1007/s10817-017-9416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-017-9416-6

Keywords

Navigation