Skip to main content
Log in

Phenylalkylamines in calcium channels: computational analysis of experimental structures

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Experimental 3D structures of calcium channels with phenylalkylamines (PAAs) provide basis for further analysis of atomic mechanisms of these important cardiovascular drugs. In the crystal structure of the engineered calcium channel CavAb with Br-verapamil and in the cryo-EM structure of the Cav1.1 channel with verapamil, the ligands bind in the inner pore. However, there are significant differences between these structures. In the crystal structure the ligand ammonium group is much closer to the ion in the selectivity-filter region Site 3, which is most proximal to the inner pore, than in the cryo-EM structure. Here we used Monte Carlo energy minimizations to dock PAAs in calcium channels. Our computations suggest that in the crystal structure Site 3 is occupied by a water molecule rather than by a calcium ion. Analysis of the published electron density map does not rule out this possibility. In the cryo-EM structures the ammonium group of verapamil is shifted from the calcium ion in Site 3 either along the pore axis, towards the cytoplasm or away from the axis. Our unbiased docking reproduced these binding modes. However, in the cryo-EM structures detergent and lipid molecules interact with verapamil. When we removed these molecules, the nitrile group of verapamil bound to the calcium ion in Site 3. Models of Cav1.2 with different PAAs suggest similar binding modes and direct contacts of the ligands electronegative atoms with the calcium ion in Site 3. Such interactions explain paradoxes in structure–activity relationships of PAAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BrVp:

Br-verapamil

MC:

Monte Carlo

MCM:

MC-minimizations

PAA:

Phenylalkylamine

RMS:

Root Mean Square

References

  1. Zamponi GW, Striessnig J, Koschak A, Dolphin AC (2015) Pharmacol Rev 67(4):821

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Hockerman GH, Peterson BZ, Johnson BD, Catterall WA (1997) Annu Rev Pharmacol Toxicol 37:361

    PubMed  CAS  Google Scholar 

  3. Godfraind T (2017) Front Pharmacol 8:286

    PubMed  PubMed Central  Google Scholar 

  4. Cosconati S, Marinelli L, Lavecchia A, Novellino E (2007) J Med Chem 50(7):1504

    PubMed  CAS  Google Scholar 

  5. Cheng RC, Tikhonov DB, Zhorov BS (2009) J Biol Chem 284(41):28332

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Lipkind GM, Fozzard HA (2003) Mol Pharmacol 63(3):499

    PubMed  CAS  Google Scholar 

  7. Tikhonov DB, Zhorov BS (2009) J Biol Chem 284(28):19006

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Tikhonov DB, Zhorov BS (2008) J Biol Chem 283(25):17594

    PubMed  CAS  Google Scholar 

  9. Li W, Shi G (2019) Pharmacol Res 139:153

    PubMed  CAS  Google Scholar 

  10. Tang L, Gamal El-Din TM, Swanson TM, Pryde DC, Scheuer T, Zheng N, Catterall WA (2016) Nature 537(7618):117

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhao Y, Huang G, Wu J, Wu Q, Gao S, Yan Z, Lei J, Yan N (2019) Cell 177(6):1495

    PubMed  CAS  Google Scholar 

  12. Garden DP, Zhorov BS (2010) J Comput Aided Mol Des 24(2):91

    PubMed  CAS  Google Scholar 

  13. Tikhonov DB, Zhorov BS (2012) Mol Pharmacol 82(1):97

    PubMed  CAS  Google Scholar 

  14. Tikhonov DB, Zhorov BS (2017) J Gen Physiol 149(4):465

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhorov BS (1981) J Struct Chem 22:4

    Google Scholar 

  16. Zhorov B (1983) J Struct Chem 23:649

    Google Scholar 

  17. Li Z, Scheraga HA (1987) Proc Natl Acad Sci USA 84(19):6611

    PubMed  CAS  Google Scholar 

  18. Abagyan R, Argos P (1992) J Mol Biol 225(2):519

    PubMed  CAS  Google Scholar 

  19. Tikhonov DB, Zhorov BS (2004) Biophys J 87(3):1526

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Weiner SJ, Kollman PA, Case DA, Singh UC, Chio C, Alagona G, Profeta S, Weiner PK (1984) J Am Chem Soc 106:765

    CAS  Google Scholar 

  21. Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) J Comput Chem 7(2):230

    PubMed  CAS  Google Scholar 

  22. Lazaridis T, Karplus M (1999) Proteins 35(2):133

    PubMed  CAS  Google Scholar 

  23. Vilar S, Cozza G, Moro S (2008) Curr Top Med Chem 8(18):1555

    PubMed  CAS  Google Scholar 

  24. Brooks CL, Pettitt M, Karplus M (1985) J Chem Phys 83:5897

    CAS  Google Scholar 

  25. Emsley P, Cowtan K (2004) Acta Crystallogr Sect D 60:2126

    Google Scholar 

  26. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) Acta Crystallogr Sect D 66:213

    CAS  Google Scholar 

  27. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25(13):1605

    PubMed  CAS  Google Scholar 

  28. Zhorov BS, Tikhonov DB (2004) J Neurochem 88(4):782

    PubMed  CAS  Google Scholar 

  29. Dilmac N, Hilliard N, Hockerman GH (2004) Mol Pharmacol 66(5):1236

    PubMed  CAS  Google Scholar 

  30. Doring F, Degtiar VE, Grabner M, Striessnig J, Hering S, Glossman H (1996) J Biol Chem 271(20):11745

    PubMed  CAS  Google Scholar 

  31. Hockerman GH, Johnson BD, Abbott MR, Scheuer T, Catterall WA (1997) J Biol Chem 272(30):18759

    PubMed  CAS  Google Scholar 

  32. Hockerman GH, Johnson BD, Scheuer T, Catterall WA (1995) J Biol Chem 270(38):22119

    PubMed  CAS  Google Scholar 

  33. Huber IG, Wappl-Kornherr E, Sinnegger-Brauns MJ, Hoda JC, Walter-Bastl D, Striessnig J (2004) J Biol Chem 279(53):55211

    PubMed  CAS  Google Scholar 

  34. Schuster A, Lacinova L, Klugbauer N, Ito H, Birnbaumer L, Hofmann F (1996) EMBO J 15(10):2365

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Johnson BD, Hockerman GH, Scheuer T, Catterall WA (1996) Mol Pharmacol 50(5):1388

    PubMed  CAS  Google Scholar 

  36. Hering S, Savchenko A, Strubing C, Lakitsch M, Striessnig J (1993) Mol Pharmacol 43(5):820

    PubMed  CAS  Google Scholar 

  37. Seydl K, Kimball D, Schindler H, Romanin C (1993) Pflugers Arch 424(5–6):552

    PubMed  CAS  Google Scholar 

  38. Hescheler J, Pelzer D, Trube G, Trautwein W (1982) Pflugers Arch 393(4):287

    PubMed  CAS  Google Scholar 

  39. Goll A, Glossmann H, Mannhold R (1986) Naunyn Schmiedebergs Arch Pharmacol 334(3):303

    PubMed  CAS  Google Scholar 

  40. Mannhold R, Steiner R, Haas W, Kaufmann R (1978) Naunyn Schmiedebergs Arch Pharmacol 302(2):217

    PubMed  CAS  Google Scholar 

  41. Mannhold R, Holtje HD, Koke V (1986) Arch Pharm (Weinheim) 319(11):990

    CAS  Google Scholar 

  42. Suzuki Y, Yamamoto N, Iimura Y, Kawano K, Kimura T, Nagato S, Ito K, Komatsu M, Norimine Y, Kimura M, Teramoto T, Kaneda Y, Hamano T, Niidome T, Yonaga M (2003) Bioorg Med Chem Lett 13(5):919

    PubMed  CAS  Google Scholar 

  43. Lacinova L, Welling A, Bosse E, Ruth P, Flockerzi V, Hofmann F (1995) J Pharmacol Exp Ther 274(1):54

    PubMed  CAS  Google Scholar 

  44. Striessnig J, Knaus HG, Grabner M, Moosburger K, Seitz W, Lietz H, Glossmann H (1987) FEBS Lett 212(2):247

    PubMed  CAS  Google Scholar 

  45. Tikhonov DB, Zhorov BS (2005) Biophys J 88(1):184

    PubMed  CAS  Google Scholar 

  46. Lipkind GM, Fozzard HA (2005) Mol Pharmacol 68(6):1611

    PubMed  CAS  Google Scholar 

  47. Buyan A, Sun D, Corry B (2018) Proc Natl Acad Sci USA 115(14):E3135

    PubMed  CAS  Google Scholar 

  48. Nguyen PT, DeMarco KR, Vorobyov I, Clancy CE, Yarov-Yarovoy V (2019) Proc Natl Acad Sci USA 116(8):2945

    PubMed  CAS  Google Scholar 

  49. Gamal El-Din TM, Lenaeus MJ, Zheng N, Catterall WA (2018) Proc Natl Acad Sci USA 115(51):13111

    PubMed  CAS  Google Scholar 

  50. Faraldo-Gomez JD, Kutluay E, Jogini V, Zhao Y, Heginbotham L, Roux B (2007) J Mol Biol 365(3):649

    PubMed  CAS  Google Scholar 

  51. Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) Nature 475(7356):353

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Cordero-Morales JF, Vasquez V (2018) Curr Opin Struct Biol 51:92

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Chemin J, Cazade M, Lory P (2014) Pflugers Arch 466(4):689

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to BSZ from the Natural Sciences and Engineering Research Council of Canada (GRPIN-2014–04894) and Russian Foundation for Basic Research (17–04-00549-П). ZY acknowledges support from the National Key Research and Development Program of China (2017YFD0201400, 2017YFD0201403). Computations were performed using facilities provided by Compute Canada (www.computecanada.ca).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Denis B. Tikhonov, Zhiguang Yuchi or Boris S. Zhorov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 3532 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, D.B., Lin, L., Yang, D.S.C. et al. Phenylalkylamines in calcium channels: computational analysis of experimental structures. J Comput Aided Mol Des 34, 1157–1169 (2020). https://doi.org/10.1007/s10822-020-00330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00330-0

Keywords

Navigation