Skip to main content
Log in

Multimillion-atom modeling of InAs/GaAs quantum dots: interplay of geometry, quantization, atomicity, strain, and linear and quadratic polarization fields

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Electronic structure and optical properties of self-assembled quantum dots strongly depend on an intricate interplay of the quantum mechanical size quantization and the atomistic built-in/internal electrostatic fields in the underlying material system. Specifically, built-in fields in zincblende quantum dots originate mainly from: (1) fundamental crystal atomicity and the interfaces between two dissimilar materials, (2) microscopic distribution of strain, and (3) the piezoelectric polarization. In this paper, we first study the origin and nature of these internal fields in InAs/GaAs quantum dots having three different geometries, namely, box, dome, and pyramid. We then quantify and delineate the impact of these internal fields on the one-particle electronic states in terms of symmetry-lowering and localization in the wavefunctions, shift in the energy states and bandgap, anisotropy and non-degeneracy in the \(P\) level, and formation of mixed excited bound states near the Brillouin zone center. Finally, we study the geometry and size-dependence of interband optical transitions in the XY and XZ planes treating the quantum size quantization and the internal fields as parameters. The computational framework employs a combination of fully atomistic valence force-field molecular mechanics, 20-band nearest-neighbor \(sp^{3} d^{5} s^{*}\) tight-binding electronic bandstructure models, and appropriate post-processing tools to obtain the interband optical transition rates. In particular, to model piezoelectricity, four different polarization models (based on the experimental and ab initio coefficients accounting for both linear and non-linear effects) have been considered in increased order of accuracy. With the non-linear piezoelectricity generally opposing the linear counterpart, the net piezoelectric field is found to be negligible in smaller dots but exhibits non-vanishing effects as the dot height is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Petroff, P.M.: Epitaxial growth and electronic structure of self-assembled quantum dots. In: Michler, P. (ed.) Single Quantum Dots: Fundamentals, Applications, and New Concepts. Springer, Berlin (2003)

    Google Scholar 

  2. Rastelli, A., Kiravittaya, S., Schmidt, O.G.: Growth and control of optically active quantum dots. In: Michler, P. (ed.) Single Semiconductor Quantum Dots. Springer, Berlin (2009)

    Google Scholar 

  3. Wang, Z.M., Liang, B., Sablon, K.A., Lee, J., Mazur, Y.I., Strom, N.W., Salamo, G.J.: Self-organization of InAs quantum-dot clusters directed by droplet homoepitaxy. Small 3(2), 235–238 (2007)

    Article  Google Scholar 

  4. Michler, P., Kiraz, A., Becher, C., Schoenfeld, W.V., Petroff, P.M., Zhang, Lidong, Hu, E., Imamoglu, A.: A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000)

    Article  Google Scholar 

  5. Bhowmick, S., Baten, M.Z., Frost, T., Ooi, B.S., Bhattacharya, P.: High performance \(\text{ InAs/In }_{0.53}\text{ Ga }_{0.23}\text{ Al }_{0.24}\text{ As/InP }\) quantum dot 1.55 \(\mu \)m tunnel injection laser. IEEE J. Quantum Electron. 50(1), 7–14 (2014)

    Article  Google Scholar 

  6. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  Google Scholar 

  7. Friesen, M., Rugheimer, P., Savage, D., Lagally, M., van der Weide, D., Joynt, R., Eriksson, M.: Practical design and simulation of silicon-based quantum-dot qubits. Phys. Rev. B 67, 121301 (2003)

    Article  Google Scholar 

  8. Bester, G., Zunger, A.: Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: atomistic symmetry, atomic relaxation, and piezoelectric effects. Phys. Rev. B 71, 045318 (2005)

    Article  Google Scholar 

  9. Marzin, J.-Y., Gérard, J.-M., Izraël, A., Barrier, D., Bastard, G.: Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 73, 716–719 (2000)

    Article  Google Scholar 

  10. Klimeck, G., Ahmed, S., Kharche, N., Bae, H., Clark, S., Haley, B., Lee, S., Naumov, M., Ryu, H., Saied, F., Prada, M., Korkusinski, M., Boykin, T.B.: Atomistic simulation of realistically sized nanodevices using NEMO 3-D: Part I—Models and benchmarks. IEEE Trans. Electron Devices 54(9), 2079–2089 (2007)

    Article  Google Scholar 

  11. Klimeck, G., Ahmed, S., Kharche, N., Korkusinski, M., Usman, M., Prada, M., Boykin, T.B.: Atomistic simulation of realistically sized nanodevices using NEMO 3-D: Part II—Applications. IEEE Trans. Electron Devices 54(9), 2090–2099 (2007)

    Article  Google Scholar 

  12. Pryor, C., Kim, J., Wang, L.W., Williamson, A.J., Zunger, A.: Comparison of two methods for describing the strain profiles in quantum dots. J. Appl. Phys. 83, 2548 (1998)

    Article  Google Scholar 

  13. Grundmann, S.M., Bimberg, D.: Electronic and optical properties of strained quantum dots modeled by 8-band kp theory. Phys. Rev. B 59, 5688–5701 (1999)

    Article  Google Scholar 

  14. Williamson, J., Wang, L.W., Zunger, Alex: Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots. Phys. Rev. B 62, 12963–12977 (2000)

    Article  Google Scholar 

  15. Grundmann, M., Stier, O., Bimberg, D.: InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52, 11969–11981 (1995)

    Article  Google Scholar 

  16. Hossain, M.Z., Medhekar, N.V., Shenoy, V.B., Johnson, H.T.: Enhanced quantum confinement due to nonuniform composition in alloy quantum dots. Nanotechnology 21, 095401 (2010)

    Article  Google Scholar 

  17. Vastola, G., Zhang, Y.-W., Shenoy, V.B.: Experiments and modeling of alloying in self-assembled quantum dots. Curr. Opin. Solid State Mater. Sci. 16(2), 64–70 (2012)

    Article  Google Scholar 

  18. Jancu, J.M., Scholz, R., Beltram, F., Bassani, F.: Empirical \(spds^{\ast }\) tight-binding calculation for cubic semiconductors: general method and material parameters. Phys. Rev. B 57, 6493 (1998)

    Article  Google Scholar 

  19. Ahmed, S., Kharche, N., Rahman, R., Usman, M., Lee, S., Ryu, H., Bae, H., Clark, S., Haley, B., Naumov, M., Saied, F., Korkusinski, M., Kennel, R., Mclennan, M., Boykin, T.B., Klimeck, G.: Multimillion atom simulations with NEMO 3-D. In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science, pp. 5745–5783. Springer, New York (2009)

    Chapter  Google Scholar 

  20. Boykin, T.B., Klimeck, G., Bowen, R.C., Oyafuso, F.: Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory. Phys. Rev. B 66, 125207 (2002)

    Article  Google Scholar 

  21. Klimeck, G., Oyafuso, F., Boykin, T.B., Bowen, R.C., von Allmen, P.: Development of a nanoelectronic 3-D (NEMO 3-D) simulator for multimillion atom simulations and its application to alloyed quantum dots. J. Comput. Model. Eng. Sci. 3, 601–642 (2002)

    MATH  Google Scholar 

  22. Lazarenkova, O.L., Allmen, P., Oyafuso, F., Lee, S., Klimeck, G.: Effect of anharmonicity of the strain energy on band offsets in semiconductor nanostructures. Appl. Phys. Lett. 85, 4193–4195 (2004)

    Article  Google Scholar 

  23. Graf, M., Vogl, P.: Electromagnetic fields and dielectric response in empirical tight-binding theory. Phys. Rev. B 51, 4940–4949 (1995)

    Article  Google Scholar 

  24. Boykin, T.B., Bowen, R.C., Klimeck, G.: Electromagnetic coupling and gauge invariance in the empirical tight-binding method. Phys. Rev. B 63, 245314 (2001)

    Article  Google Scholar 

  25. Boykin, T.B., Vogl, P.: Dielectric response of molecules in empirical tight-binding theory. Phys. Rev. B 65, 035202 (2001)

    Article  Google Scholar 

  26. Haley, B.P., Lee, S., Luisier, M., Ryu, H., Saied, F., Clark, S., Bae, H., Klimeck, G.: Advancing nanoelectronic device modeling through peta-scale computing and deployment on nanoHUB. J. Phys. 180, 012075 (2009)

    Google Scholar 

  27. Bester, G., Wu, X., Vanderbilt, D., Zunger, A.: Importance of second-order piezoelectric effects in zincblende semiconductors. Phys. Rev. Lett. 96, 187602 (2006)

    Article  Google Scholar 

  28. Bester, G., Zunger, A., Wu, X., Vanderbilt, D.: Effects of linear and nonlinear piezoelectricity on the electronic properties of InAs/GaAs quantum dots. Phys. Rev. B 74, 081305 (2006)

    Article  Google Scholar 

  29. Ahmed, S., Islam, S., Mohammed, S.: Electronic structure of InN/GaN quantum dots: multimillion atom tight-binding simulations. IEEE Trans. Electron Devices 57(1), 164–173 (2010)

    Article  Google Scholar 

  30. Yalavarthi, K., Chimalgi, V., Ahmed, S.: How important is nonlinear piezoelectricity in wurtzite GaN/InN/GaN disk-in-nanowire LED structures? Opt. Quantum Electron. 46, 925–933 (2014)

    Article  Google Scholar 

  31. Sundaresan, S.S., Gaddipati, V.M., Ahmed, S.S.: Effects of spontaneous and piezoelectric polarization fields on the electronic and optical properties in GaN/AlN quantum dots: multimillion-atom \(sp^{3} d^{5} s^{\ast }\) tight-binding simulations. Int. J. Numer. Model. 2, (2014). doi:10.1002/jnm.2008

  32. Merill, K., Yalavarthi, K., Ahmed, S.: Giant growth-plane optical anisotropy in c-plane wurtzite GaN/InN/GaN dot-in-nanowires. Superlattices Microstruct. 52(5), 949–961 (2012)

    Article  Google Scholar 

  33. Sundaresan, S., Islam, S., Ahmed, S.: Built-in electric fields in InAs/GaAs quantum dots: geometry dependence and effects on the electronic structure. In: Technical proceedings of IEEE nanotechnology materials and devices conferences (NMDC), California, USA, pp. 30–35 12–15 Oct 2010

  34. Ahmed, S., Yalavarthi, K., Gaddipati, V., Muntahi, A., Sundaresan, S., Mohammed, S., Islam, S., Hindupur, R., John, D., Ogden, J.: Quantum atomistic simulations of nanoelectronic devices using QuADS. In: Vasileska, D., Goodnick, S.M. (eds.) Nano-electronic Devices: Semiclassical and Quantum Transport Modeling, pp. 405–441. Springer, New York (2011)

    Chapter  Google Scholar 

  35. Ahmed, S., Usman, M., Heitzinger, C., Rahman, R., Schliwa, A., Klimeck, G.: Atomistic simulation of non-degeneracy and optical polarization anisotropy in zincblende quantum dots. In: Technical proceedings of the 2nd IEEE international conference on nano/micro engineered and molecular systems, Bangkok, pp. 937–942, 16–19 Jan 2007

  36. Usman, M., Tan, Y.-H.M., Ryu, H., Ahmed, S.S., Krenner, H.J., Boykin, T.B., Klimeck, G.: Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million atom electronic structure calculations. Nanotechnology 22, 315709 (2011)

    Article  Google Scholar 

  37. Andreev, D., O’Reilly, E.P.: Optical matrix element in InAs/GaAs quantum dots: dependence on quantum dot parameters. Appl. Phys. Lett. 87, 213106 (2005)

    Article  Google Scholar 

  38. Ryu, H., Nam, D., Ahn, B.-Y., Lee, J.R., Cho, K., Lee, S., Klimeck, G., Shin, M.: Optical TCAD on the net: a tight-binding study of inter-band light transitions in self-assembled InAs/GaAs quantum dot photodetectors. Math. Comput. Model. 58, 288–299 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by The US National Science Foundation Grant No. 1102192. Computational resources on XSEDE and ORNL Jaguar (through the 2009 ORAU HPC Award) platforms were used for part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaikh Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Sundaresan, S., Ryu, H. et al. Multimillion-atom modeling of InAs/GaAs quantum dots: interplay of geometry, quantization, atomicity, strain, and linear and quadratic polarization fields. J Comput Electron 14, 543–556 (2015). https://doi.org/10.1007/s10825-015-0682-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0682-4

Keywords

Navigation