Skip to main content
Log in

A unified compact model for electrostatics of III–V GAA transistors with different geometries

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this work, a physics-based unified compact model for III-V GAA FET electrostatics is proposed. The model considers arbitrary cross-sectional geometry of GAA FETs viz. rectangular, circular and elliptical. A comprehensive model for cuboid GAA FETs is developed first using the constant charge density approximation. The model is then combined with the earlier developed model for cylindrical GAA FETs to have a unified representation. The efficacy of the model is validated by comparing it with simulation data from a 2D coupled Poisson-Schrödinger solver. The proposed model is found to be, (a) accurate for GAA FETs with different geometries, dimensions and channel materials and (b) computationally efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ferain, I., Colinge, C.A., Colinge, J.P.: Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479(7373), 310 (2011). https://doi.org/10.1038/nature10676

    Article  Google Scholar 

  2. Kuhn, K.J.: Considerations for ultimate CMOS scaling. IEEE Trans. Electron. Dev. 59(7), 1813 (2012). https://doi.org/10.1109/TED.2012.2193129

    Article  Google Scholar 

  3. Bae, G., Bae, D., Kang, M., Hwang, S.M., Kim, S.S., Seo, B., Kwon, T.Y., Lee, T.J., Moon, C., Choi, Y.M., Oikawa, K., Masuoka, S., Chun, K.Y., Park, S.H., Shin, H.J., Kim, J.C., Bhuwalka, K.K., Kim, D.H., Kim, W.J., Yoo, J., Jeon, H.Y., Yang, M.S., Chung, S., Kim, D., Ham, B.H., Park, K.J., Kim, W.D., Park, S.H., Song, G., Kim, Y.H., Kang, M.S., Hwang, K.H., Park, C., Lee, J., Kim, D., Jung, S., Kang, H.K.: 3nm GAA technology featuring multi-bridge-channel FET for low power and high performance applications. In: IEEE International Electron Devices Meeting (IEDM), pp. 28.7.1–28.7.4. (2018). https://doi.org/10.1109/IEDM.2018.8614629

  4. Del Alamo, J.A.: Nanometre-scale electronics with III–V compound semiconductors. Nature 479(7373), 317 (2011). https://doi.org/10.1038/nature10677

    Article  Google Scholar 

  5. Kim, D.H., del Alamo, J.A., Lee, J.H., Seo, K.S.: Performance evaluation of 50 nm \(\text{In}_{0.7}\text{ Ga}_{0.3}\)As HEMTs for beyond-CMOS logic applications. In: IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest, pp. 767–770 (2005). https://doi.org/10.1109/IEDM.2005.1609467

  6. Hudait, M.K., Chau, R.: Integrating III–V on silicon for future nanoelectronics. In: 2008 IEEE Compound Semiconductor Integrated Circuits Symposium, pp. 1–2 (2008). https://doi.org/10.1109/CSICS.2008.8

  7. Zhao, X., Heidelberger, C., Fitzgerald, E., Lu, W., Vardi, A., del Alamo, J.: Sub-10 nm diameter InGaAs vertical nanowire MOSFETs. In: Electron Devices Meeting (IEDM), 2017 IEEE International, pp. 17.2.1–17.2.4 (2017). https://doi.org/10.1109/IEDM.2017.8268407

  8. Ramesh, S., Ivanov, T., Putcha, V., Alian, A., Sibaja-Hernandez, A., Rooyackers, R., Camerotto, E., Milenin, A., Pinna, N., Kazzi, S.E., Veloso, A., Lin, D., Lagrain, P., Favia, P., Collaert, N., Meyer, K.D.: Record performance Top-down \(\text{ In}_{0.53}\text{ Ga}_{0.47}\)As vertical nanowire FETs and vertical nanosheets. In: 2017 IEEE International Electron Devices Meeting (IEDM), pp. 17.1.1–17.1.4 (2017). https://doi.org/10.1109/IEDM.2017.8268406

  9. Kilpi, O.P., Svensson, J., Wu, J., Persson, A.R., Wallenberg, R., Lind, E., Wernersson, L.E.: Vertical InAs/InGaAs heterostructure metal-oxide-semiconductor field-effect transistors on Si. Nano Lett. 17(10), 6006 (2017). https://doi.org/10.1021/acs.nanolett.7b02251

    Article  Google Scholar 

  10. Kilpi, O.P., Svensson, J., Wernersson, L.E.: Sub-100-nm gate-length scaling of vertical InAs/InGaAs nanowire MOSFETs on Si. In: IEEE International Electron Devices Meeting (IEDM), pp. 17–20 (2017). https://doi.org/10.1109/IEDM.2017.8268408

  11. Mudanai, S., Roy, A., Kotlyar, R., Rakshit, T., Stettler, M.: Capacitance compact model for ultrathin low-electron-effective-mass materials. IEEE Trans. Electron Dev. 58(12), 4204 (2011). https://doi.org/10.1109/TED.2011.2168529

    Article  Google Scholar 

  12. Yadav, C., Ganeriwala, M.D., Mohapatra, N.R., Agarwal, A., Chauhan, Y.S.: IEEE Trans. Nanotechnol. 16(4), 703 (2017). https://doi.org/10.1109/TNANO.2017.2709752

    Article  Google Scholar 

  13. Ganeriwala, M.D., Ruiz, F.G., Marin, E.G., Mohapatra, N.R.: Compact modeling of gate capacitance in III–V channel quadruple-gate FETs. IEEE Trans. Electron. Dev. 99, 1 (2018). https://doi.org/10.1109/TED.2018.2866885

    Article  Google Scholar 

  14. Dasgupta, A., Agarwal, A., Chauhan, Y.S.: Unified compact model for nanowire transistors including quantum effects and quasi-ballistic transport. IEEE Trans. Electron. Dev. 64(4), 1837 (2017). https://doi.org/10.1109/TED.2017.2672207

    Article  Google Scholar 

  15. Wang, L., Asbeck, P.M., Taur, Y.: Self-consistent 1-D Schrödinger-Poisson solver for III-V heterostructures accounting for conduction band non-parabolicity. Solid-State Electron. 54(11), 1257 (2010). https://doi.org/10.1063/1.349389

    Article  Google Scholar 

  16. Marin, E., Ruiz, F., Tienda-Luna, I., Godoy, A., Sánchez-Moreno, P., Gámiz, F.: Analytic potential and charge model for III–V surrounding gate metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 112(8), 084512 (2012). https://doi.org/10.1063/1.4759275

    Article  Google Scholar 

  17. Dasgupta, A., Parihar, S.S., Kushwaha, P., Agarwal, H., Kao, M., Salahuddin, S., Chauhan, Y.S., Hu, C.: BSIM compact model of quantum confinement in advanced nanosheet FETs. IEEE Trans. Electron. Dev. 67(2), 730 (2020). https://doi.org/10.1109/TED.2019.2960269

    Article  Google Scholar 

  18. Chakraborty, A.S., Mahapatra, S.: Surface potential equation for low effective mass channel common double-gate MOSFET. IEEE Trans. Electron Dev. 64(4), 1519 (2017). https://doi.org/10.1109/TED.2017.2661798

    Article  Google Scholar 

  19. Numata, T., Uno, S., Hattori, J., Mil’nikov, G., Kamakura, Y., Mori, N., Nakazato, K.: A self-consistent compact model of ballistic nanowire MOSFET with rectangular cross section. IEEE Trans. Electron. Devices 60(2), 856 (2013). https://doi.org/10.1109/TED.2012.2232928

    Article  Google Scholar 

  20. Ruiz, F.J.G., Godoy, A., Gamiz, F., Sampedro, C., Donetti, L.: A comprehensive study of the corner effects in Pi-gate MOSFETs including quantum effects. IEEE Trans. Electron. Dev. 54(12), 3369 (2007). https://doi.org/10.1109/TED.2007.909206

    Article  Google Scholar 

  21. Marin, E.G., Ruiz, F.G., Godoy, A., Tienda-Luna, I.M., Gámiz, F.: Mobility and Capacitance Comparison in Scaled InGaAs Versus Si Trigate MOSFETs. IEEE Electron. Device Lett. 36(2), 114 (2015). https://doi.org/10.1109/LED.2014.2380434

    Article  Google Scholar 

  22. Kim, J., Fischetti, M.V.: Electronic band structure calculations for biaxially strained Si, Ge, and III–V semiconductors. J. Appl. Phys. 108(1), 013710 (2010). https://doi.org/10.1063/1.3437655

    Article  Google Scholar 

  23. Robertson, J., Falabretti, B.: Band offsets of high K gate oxides on III-V semiconductors. J. Appl. Phys. 100(1), 014111 (2006). https://doi.org/10.1063/1.2213170

    Article  Google Scholar 

  24. Ganeriwala, M.D., Yadav, C., Ruiz, F.G., Marin, E.G., Chauhan, Y.S., Mohapatra, N.R.: Modeling of quantum confinement and capacitance in III-V gate-all-around 1-D transistors. IEEE Trans. Electron. Dev. 64(12), 4889 (2017). https://doi.org/10.1109/TED.2017.2766693

    Article  Google Scholar 

  25. Ganeriwala, M.D., Ruiz, F.G., Marin, E.G., Mohapatra, N.R.: A compact model for III–V nanowire electrostatics including band non-parabolicity. J. Comput. Electron. 18(4), 1229 (2019). https://doi.org/10.1007/s10825-019-01389-1

    Article  Google Scholar 

  26. Niquet, Y., Lherbier, A., Quang, N., Fernández-Serra, M., Blase, X., Delerue, C.: Electronic structure of semiconductor nanowires. Phys. Rev. B 73(16), 165319 (2006). https://doi.org/10.1103/PhysRevB.73.165319

    Article  Google Scholar 

Download references

Funding

This work is supported by the Visvesvaraya PhD scheme by MeitY, Gover nment of India Enrique G. Marin gratefully acknowledges Juan de la Cierva Incorporation IJCI-2017-32297 (MINECO/AEI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit D. Ganeriwala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

According to the CCDA, the \(|\varPsi _{i,j}(x,y)|^2\) can be approximated, to satisfy the condition of normalization as,

$$\begin{aligned} \int _{-W/2}^{W/2}\int _{-H/2}^{H/2}|\varPsi _{i,j}(x,y)|^2{\text {d}}x{\text {d}}y=1 \end{aligned}$$
(24)

Equation (24) is written with the assumption that the entire wavefunction lies within the semiconductor channel. Neglecting the wavefunction penetration in the oxide for the normalization of the wavefunction has little impact on the physics that are more sensitive to the calculation of the quantized energy levels. The finite height of the semiconductor-dielectric barrier is considered in the model via the values of \(E_{i,j}\). Since with CCDA, n(x,y) is assumed to be constant within the semiconductor channel, \(|\varPsi _{i,j}(x,y)|^2\) will also constant.

Evaluating (24) \(|\varPsi _{i,j}(x,y)|^2\) can be written as,

$$\begin{aligned} |\varPsi _{i,j}(x,y)|^2 = \frac{1}{WH} \end{aligned}$$
(25)

Appendix 2

Equation (7) with CCDA can be written as,

$$\begin{aligned} \frac{\partial ^2\varPhi (x,y)}{\partial x^2}+\frac{\partial ^2\varPhi (x,y)}{\partial y^2} = -\frac{Q_s}{\varepsilon _s WH} \end{aligned}$$
(26)

Since the source term \(-Q_s/\varepsilon _s WH\) is a constant, \(\varPhi (x,y)\) can be assumed to be of the form \(\varPhi (x,y) = Ax^2 + By^2 + Cx + Dy + E\). Substituting in (26),

$$\begin{aligned} A+B = -\frac{Q_s}{2\varepsilon _s WH} \end{aligned}$$
(27)

The boundary conditions for \(\varPhi (x,y)\) in a III-V GAA FETs are

$$\begin{aligned}&\frac{\partial \varPhi (x,y)}{\partial x} \bigg |_{x=0} = 0 \end{aligned}$$
(28)
$$\begin{aligned}&\frac{\partial \varPhi (x,y)}{\partial y} \bigg |_{y=0} = 0 \end{aligned}$$
(29)
$$\begin{aligned}&\varPhi (x,y) \bigg |_{x=0,y=0} = \varPhi _c \end{aligned}$$
(30)

Also,

$$\begin{aligned}&\frac{1}{H}\int_{-H/2}^{H/2}\varPhi (-W/2,y){\text {d}}y = \frac{1}{W}\int_{-W/2}^{W/2}\varPhi (x,-H/2){\text {d}}x \end{aligned}$$
(31)

Using the above conditions and analytical solution of \(\varPhi (x,y)\) can be written as,

$$\begin{aligned} \varPhi (x,y) = -\frac{Q_s}{2\varepsilon _sW^2+H^2}\left[ \frac{H}{W}x^2+\frac{W}{H}y^2\right] + \varPhi _c \end{aligned}$$
(32)

Appendix 3

The perturbation term can be written as,

$$\begin{aligned} \varDelta Ee_{i,j}\,=\,<\varPsi ^*_{i,j}|\widetilde{\varPhi }|\varPsi _{i,j}>\end{aligned}$$
(33)

where the perturbing potential is given by, \(\widetilde{\varPhi }(x,y) = \varPhi (x,y) - \varPhi _c\). Here \(\varPhi _c\) is used as the reference to calculate \(\hbox {Eg}_{\mathrm{i,j}}\). Using (11) \(\widetilde{\varPhi }\)(x,y) can be written as,

$$\begin{aligned} \widetilde{\varPhi }(x,y) = -\frac{Q_s}{2\varepsilon _sW^2+H^2}\left[ \frac{H}{W}x^2+\frac{W}{H}y^2\right] \end{aligned}$$
(34)

Using (34), (33) can be written as,

$$\begin{aligned}&\varDelta Ee_{i,j} = \\\nonumber &-q\int_{-W/2}^{W/2}\int_{-H/2}^{H/2} |\varPsi _{i,j}(x,y)|^2\left( -\frac{Q_s}{2\varepsilon _sW^2+H^2} \left[ \frac{H}{W}x^2+\frac{W}{H}y^2\right] \right) {\text {d}}x{\text {d}}y \end{aligned}$$
(35)

Substituting \(|\varPsi _{i,j}(x,y)|^2 = 1/WH\) and integrating (35), the perturbation term can be derived as,

$$\begin{aligned} \varDelta Ee_{i,j} = \frac{qQ_sWH}{12\varepsilon _s(W^2+H^2)} \end{aligned}$$
(36)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganeriwala, M.D., Ruiz, F.G., Marin, E.G. et al. A unified compact model for electrostatics of III–V GAA transistors with different geometries. J Comput Electron 20, 1676–1684 (2021). https://doi.org/10.1007/s10825-021-01751-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01751-2

Keywords

Navigation