Skip to main content
Log in

Analytical solutions of cubic and quintic polynomials in micro and nanoelectronics using the Lambert-Tsallis Wq function

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

There are many problems in nanoelectronics whose solutions are roots of cubic or quintic polynomials. In most of these cases, the analytical solutions are not known and numerical methods are used. In this direction, the present work shows the analytical solutions of the roots of some cubic and quintic functions, as well they are used to provide the analytical solutions for the pull in point of a simple microactuator, for the space charge limited current in a nanowire and for the displacement of a plate due to the Casimir force in a nanoelectromechanical device. The analytical solutions are simple to handle and they permit a better understanding of the role of the physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Perelomov, A.M.: Hypergeometric solutions of some algebraic equations. Theor. Math. Phys. 140(1), 895–904 (2004)

    Article  MathSciNet  Google Scholar 

  2. da Silva, G.B., Ramos, R.V.: The Lambert-Tsallis Wq function. Physica A 525, 164–170 (2019)

    Article  MathSciNet  Google Scholar 

  3. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  Google Scholar 

  4. Valluri, S.R., Jeffrey, D.J., Corless, R.M.: Some applications of the Lambert W function to Physics. Can. J. Phys. 78(9), 823–831 (2000)

    Google Scholar 

  5. Jenn, D.C.: Applications of the Lambert W function in electromagnetics. IEEE Antennas Propag. Mag. 44, 3 (2002)

    Article  Google Scholar 

  6. Blondeau, F.C., Monir, A.: Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent ½. IEEE Trans. Signal Process. 50(9), 2160–2165 (2002)

    Article  MathSciNet  Google Scholar 

  7. Alexander, E., Dubinov, A.E., Kitayev, I.N.: Nonlinear periodic backward dust acoustic waves. Planet. Space Sci. 195, 105142/1-105142/6 (2021)

    Google Scholar 

  8. Roberts, K., Valluri, S.R.: Tutorial: the quantum finite square well and the Lambert W function. Can. J. Phys. 95(2), 105–110 (2017)

    Article  Google Scholar 

  9. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479 (1988)

    Article  MathSciNet  Google Scholar 

  10. Kaajakari, V.: MEMS Tutorial:Pull-in voltage in electrostatic microactuators. http://www.kaajakari.net/~ville/research/tutorials/tutorials.shtml (2021)

  11. Hernandez, J., Esquivel-Sirvent, R.: Stability of micro and nano devices actuated by Casimir forces. NSTI-Nanotech 2006, www.nsti.org. ISBN: 0-9767985-8-1, vol. 3, pp. 523–525 (2006)

  12. de Los Santos, H.J., Fischer, G., Tilmans, H.A.C., van Beek, J.T.M.: RF MEMS for ubiquitous wireless connectivity: part 1: fabrication. IEEE Microwave Mag. 5(4), 36–49 (2004)

    Article  Google Scholar 

  13. Rousseaux, G., Maïssa, P., Mathis, C., Coullet, P., Philbin, T.G., Leonhardt, U.: Horizon effects with surface waves on moving water. New J. Phys. 12, 095018/1-095018/28 (2010). https://doi.org/10.1088/1367-2630/12/9/095018

    Article  Google Scholar 

  14. Pudasaini, S.P.: A novel description of fluid flow in porous and debris materials. Eng. Geol. 202, 62–73 (2016)

    Article  Google Scholar 

  15. Knospe, C.R., Zhu, L.: Performance limitations of non-laminated magnetic suspension systems. IEEE Trans. Control Syst. Technol. 19(2), 327–336 (2011)

    Article  Google Scholar 

  16. Beckwith, A.W.: How a Kerr-Newman black hole leads to criteria about if gravity is quantum due to questions on if (∆t)5+A1(∆t)2+A2 = 0 is solvable. J. High Energy Phys. Gravit. Cosmol. 5, 35–40 (2019)

    Article  Google Scholar 

  17. Battista, E., Dell’Agnello, S., Esposito, G., Simon, J.: Quantum effects on Lagrangian points and displaced periodic orbits in the Earth-Moon system. Phys. Rev. D 91, 084041/1-084041/18 (2015)

    Article  MathSciNet  Google Scholar 

  18. Mark, P., Helfrich, W.: Space-charge-limited currents in organic crystals. J. Appl. Phys. 33(1), 205–215 (1962)

    Article  Google Scholar 

  19. Rafiq, M.A.: Carrier transport mechanisms in semiconductor nanostructures and devices. J. Semicond. 39(6), 061002–1/13 (2018)

    Article  Google Scholar 

  20. de Andrade, J.S., Nobrega, K.Z., Ramos, R.V.: Analytical solution of the current-voltage characteristics of circuits with power-law dependence of the current on the applied voltage using the Lambert-Tsallis Wq function. IEEE Trans. Circuits Syst. II Express Briefs (2021). https://doi.org/10.1109/TCSII.2021.3110407

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and CNPq via Grant No. 307184/2018-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Ramos.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose. The author has no conflicts of interest to declare that are relevant to the content of this article.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, R.V. Analytical solutions of cubic and quintic polynomials in micro and nanoelectronics using the Lambert-Tsallis Wq function. J Comput Electron 21, 396–400 (2022). https://doi.org/10.1007/s10825-022-01852-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01852-6

Keywords

Navigation