Skip to main content
Log in

Gate-stack optimization of a vertically stacked nanosheet FET for digital/analog/RF applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Nanosheet field effect transistors (NS-FET) are a most promising candidate for next-generation semiconductor devices for sub-7-nm technology nodes. This work explores a two-channel vertically stacked NS-FET from a digital and analog/RF perspective. The influence of high-κ gate oxide is investigated with respect to the NS-FET-based CMOS inverter and RF/analog parameters of the NS-FET. It is found that the high-κ gate oxide does not change the performance of the NS-FET-based CMOS inverter significantly. Moreover, the proposed NS-FET at LC = 12 nm exhibits Ion, Ion/Ioff, and subthreshold swing (SS) of 646 µA/µm, 1.24 × 107, and 68.8 mV/dec, respectively, for a SiO2 gate dielectric and 779 µA/µm, 2.5 × 107, and 70 mV/dec, respectively, for a TiO2 gate dielectric. However, the high-κ gate oxide leads to deterioration in RF/analog parameters of the NS-FET, particularly in weak/moderate regions of operation. To overcome the deterioration caused by the high-κ gate oxide, nanosheet thickness (TNS), channel length (LC), and spacer dielectric material are optimized. It is revealed that the degradation in RF/analog parameters can be reduced by considering a thicker TNS (10 nm), lower LC (8 nm), and low-κ spacer dielectric (SiO2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Kuang Chiang, T.: Nanosheet FET: A new subthreshold current model caused by interface-trapped-charge and its application for evaluation of subthreshold logic gate. Microelectron. J. 104, 104893 (2020)

    Article  Google Scholar 

  2. Frank, M.M., et al.: Titanium silicide/titanium nitride full metal gates for dual-channel gate-first CMOS. IEEE Electron Device Lett. 37(2), 150–153 (2016)

    Article  Google Scholar 

  3. Swathi, M., Anand, D., Purushothaman, A., Gopalan, S.: Comparison of high K/Metal gate based CMOS amplifiers performance with traditional gate stack structure. In 4th International Conference on Electrical Energy Systems (ICEES), 2018, pp. 8–13

  4. Sardroudi, F. M., Habibi, M., Moaiyeri, M. H.: A low-power dynamic ternary full adder using carbon nanotube field-effect transistors. AEU - Int. J. Electron. Commun., vol. 131, Mar. 2021

  5. LAPEDUS, M.: 5nm Vs. 3nm, 2019. [Online]. Available: https://semiengineering.com/5nm-vs-3nm/.

  6. Kim, S. D., Guillorn, M., Lauer, I., Oldiges, P., Hook, T., Na, M. H.: Performance trade-offs in FinFET and GAA device architectures for 7nm-node and beyond. In IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 2015, pp. 1–3

  7. Jegadheesan, V., Sivasankaran, K., Konar, A.: Impact of geometrical parameters and substrate on analog/Rf performance of stacked nanosheet field effect transistors. Mater. Sci. Semicond. Process. 93, 188–195 (2019)

    Article  Google Scholar 

  8. Ajayan, J., Nirmal, D., Tayal, S., Bhattacharya, S., Arivazhagan, L., Fletcher, A.A., Ajitha, D.: Nanosheet field effect transistors-A next generation device to keep Moore’s law alive: An intensive study. Microelectron. J. 114, 105141 (2021)

    Article  Google Scholar 

  9. Bae, D.I., Choi, B.D.: Short channels and mobility control of GAA multi stacked nanosheets through the perfect removal of SiGe and post treatment. Electron. Lett. 56(8), 400–402 (2020)

    Article  Google Scholar 

  10. Choi, Y., et al.: Simulation of the effect of parasitic channel height on characteristics of stacked gate-all-around nanosheet FET”. Solid. State. Electron. 164, 107686 (2020)

    Article  Google Scholar 

  11. Tayal, S., Ajayan, J., Joseph, L.M.I.L., et al.: A comprehensive investigation of vertically stacked silicon nanosheet field effect transistors: an Analog/RF perspective. SILICON (2021). https://doi.org/10.1007/s12633-021-01128-x

    Article  Google Scholar 

  12. Loubet, N. et al.: Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In Proc. Symp. VLSI Technol., 2017, pp. T230–T231 https://doi.org/10.23919/VLSIT.2017.7998183

  13. Momose, H.S., et al.: 1.5 nm direct-tunneling gate oxide Si MOSFET’s. IEEE Trans. Electron Devices 43(8), 1233–1242 (1996)

    Article  Google Scholar 

  14. Robertson, J., Wallace, R.M.: High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. R Reports 88, 1–41 (2015)

    Article  Google Scholar 

  15. Wong, H., Iwai, H.: On the scaling of subnanometer EOT gate dielectrics for ultimate nano CMOS technology. Microelectron. Eng. 138, 57–76 (2015)

    Article  Google Scholar 

  16. Tsui, B.Y., Chin, L.F.: A comprehensive study on the FIBL of nanoscale MOSFETs. IEEE Trans. Electron Devices 51(10), 1733–1736 (2004)

    Article  Google Scholar 

  17. Ma, F., Liu, H.-X., Kuang, Q.-W., Fan, J.-B.: The influence and explanation of fringing-induced barrier lowering on sub-100 nm MOSFETs with high- k gate dielectrics. Chinese Phys. B 21(5), 0573050 (2012)

    Google Scholar 

  18. Mohapatra, S.K., Pradhan, K.P., Sahu, P.K.: Influence of High-k Gate Dielectric on Nanoscale DG-MOSFET. Int. J. Adv. Sci. Technol. 65, 19–26 (2014)

    Article  Google Scholar 

  19. Usha, C., Vimala, P.: An electrostatic analytical modeling of high-k stacked gate-all-around heterojunction tunnel FETs considering the depletion regions. AEU - Int. J. Electron. Commun. 110, 152877 (2019)

    Article  Google Scholar 

  20. Pradhan, K.P., Mohapatra, S.K., Sahu, P.K., Behera, D.K.: Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET. Microelectronics J. 45, 144–151 (2014)

    Article  Google Scholar 

  21. Narendar, V., Mishra, R.A.: Analytical modelling and simulation of multigate FinFET devices and the impact of high-k dielectrics on short channel effects (SCEs). Superlattices Microstruct. 85, 357–369 (2015)

    Article  Google Scholar 

  22. Tayal, S., Nandi, A.: Effect of FIBL in-conjunction with channel parameters on analog and RF FOM of FinFET. Superlattices Microstruct. 105, 152–162 (2017)

    Article  Google Scholar 

  23. Nandi, A., Saxena, A.K., Dasgupta, S.: Enhancing low temperature analog performance of underlap FinFET at scaled gate lengths. IEEE Trans. Electron Devices 61(11), 3619–3624 (2014)

    Article  Google Scholar 

  24. Tayal, S., Nandi, A.: Performance analysis of Junctionless DGMOSFET based 6T SRAM with gate-stack configuration. Micro Nano Lett. 13(6), 838–841 (2018)

    Article  Google Scholar 

  25. Sentarus Device User Guide [online]., “http://www.synopsys.com.” .

  26. Gupta, S., Nandi, A.: Effect of air spacer in underlap GAA nanowire: An analogue/RF perspective. IET Circuits, Devices Syst. 13(8), 1196–1202 (2019)

    Article  Google Scholar 

  27. Kim, S., Kim, M., Ryu, D., Lee, K., Kim, S., Lee, J., Lee, R., Kim, S., Lee, J.-H., Park, B.-G.: Investigation of electrical characteristic behavior induced by channel-release process in stacked nanosheet gate-all around MOSFETs. IEEE Trans. Electron Devices 67, 2648–2652 (2020)

    Article  Google Scholar 

  28. Tsai, M.-J., Peng, K.-H., Sun, C.-J., Yan, S.-C., Hsu, C.-C., Lin, Y.-R., Lin, Y.-H., Wu, Y.-C.: Fabrication and characterization of stacked poly-Si nanosheet with gate-all-around and multi-gate junctionless field effect transistors. IEEE J. Electron Devices Soc. 7, 1133–1139 (2019)

    Article  Google Scholar 

  29. Nagy, D., Espiñeira, G., Indalecio, G., García-Loureiro, A.J., Kalna, K., Seoane, N.: Benchmarking of FinFET, nanosheet, and nanowire FET architectures for future technology nodes. IEEE Access 8, 53196–53202 (2020)

    Article  Google Scholar 

  30. Jeong, J., Yoon, J., Lee, S., Baek, R.: Comprehensive analysis of source and drain recess depth variations on silicon nanosheet FETs for sub 5-nm node SoC application. IEEE Access 8, 35873–35881 (2020)

    Article  Google Scholar 

  31. Zafarkhah, E., Maymandi-Nejad, M., Zare, M.: Improved accuracy equation for propagation delay of a CMOS inverter in a single ended ring oscillator. AEU - Int. J. Electron. Commun. 71, 110–117 (2017)

    Article  Google Scholar 

  32. Seifollahi, S., Ziabari, S.A.S., Kiani-Sarkaleh, A.: A design of nanoscale double-gate FET based ring oscillator with improved oscillation frequency using device engineering. AEU-Int. J. Electron. Commun. 134, 153701 (2021)

    Article  Google Scholar 

  33. Rabaey, J. M.: Digital integrated circuits: A design perspective, 2nd ed. PHI, 2003

  34. Tayal, S., Samarat, P., Keerthi, V., Jena, B.: Conventional vs. junctionless gate-stack DG-MOSFET based CMOS inverter. IJND 12(2), 98–103 (2021)

    Google Scholar 

  35. Nandi, A., Saxena, A.K., Dasgupta, S.: Analytical modeling of a double gate mosfet considering source/drain lateral gaussian doping profile. IEEE Trans. Electron Devices 60(11), 3705–3709 (2013)

    Article  Google Scholar 

  36. Chen, Q., Wang, L., Meindl, J.D.: Fringe-induced barrier lowering (FIBL) included threshold voltage model for double-gate MOSFETs. Solid. State. Electron. 49, 271–274 (2005)

    Article  Google Scholar 

  37. Tayal, S., Gupta, S., Nandi, A., Gupta, A., Jadav, S.: Study of inner-gate engineering effect on analog/radio frequency performance of conventional Si-nanotube field effect transistor. J. Nanoelectron. Optoelectron. 14(7), 953–957 (2019)

    Article  Google Scholar 

  38. Tayal, S., Nandi, A.: Study of temperature effect on junctionless Si nanotube FET concerning analog/RF performance. Cryogenics 92, 71–75 (2018)

    Article  Google Scholar 

  39. Mohapatra, N. R., Desai, M. P., Rao, V. R.: Detailed analysis of FIBL in MOS transistors with high-K gate dielectrics. In 16th International Conference on VLSI Design, 2003, p. 99

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the work in this paper was carried out together by Shubham Tayal, Sandip Bhattacharya, Deboraj Muchahary, J Ajayan, Laxman Raju Thoutam, Sunil Jadav, Bal Krishan and M. Nizamuddin.

Corresponding author

Correspondence to Shubham Tayal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest reported in this paper.

Compliance with ethical standards

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to participate

Not applicable.

Consent for publication

Not applicable as the manuscript does not contain any data from individuals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayal, S., Bhattacharya, S., Ajayan, J. et al. Gate-stack optimization of a vertically stacked nanosheet FET for digital/analog/RF applications. J Comput Electron 21, 608–617 (2022). https://doi.org/10.1007/s10825-022-01864-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01864-2

Keywords

Navigation