Skip to main content
Log in

Modelling intrinsic electrophysiological properties of ON and OFF retinal ganglion cells

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

ON and OFF retinal ganglion cells (RGCs) display differences in their intrinsic electrophysiology: OFF cells maintain spontaneous activity in the absence of any input, exhibit subthreshold membrane potential oscillations, rebound excitation and burst firing; ON cells require excitatory input to drive their activity and display none of the aforementioned phenomena. The goal of this study was to identify and characterize ionic currents that explain these intrinsic electrophysiological differences between ON and OFF RGCs. A mathematical model of the electrophysiological properties of ON and OFF RGCs was constructed and validated using published patch-clamp data from isolated intact mouse retina. The model incorporates three ionic currents hypothesized to play a role in generating behaviors that are different between ON and OFF RGCs. These currents are persistent Na + , I NaP, hyperpolarization-activated, I h, and low voltage activated Ca2 + , I T, currents. Using computer simulations of Hodgkin-Huxley type neuron with a single compartment model we found two distinct sets of I NaP, I h, I T conductances that correspond to ON and OFF RGCs populations. Simulations indicated that special properties of I T explain the differences in intrinsic electrophysiology between ON and OFF RGCs examined here. The modelling shows that the maximum conductance of I T is higher in OFF than in ON cells, in agreement with recent experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ammermuller, J., & Kolb, H. (1995). The organization of the turtle inner retina. Part I. ON- and OFF-centre pathways. Journal of Comparative Neurology, 358, 1–34.

    Article  PubMed  CAS  Google Scholar 

  • Balya, D., Roska, B., Roska, T., Frank, S., & Werblin, A. (2002). CNN framework for modeling parallel processing in a mammalian retina. International Journal Of Circuit Theory and Applications, 30, 363–393.

    Article  Google Scholar 

  • Benison, G., Keizer, J., Chalupa, L. M., & Robinson, D. W. (2001). Modelling temporal behavior of postnatal cat retinal ganglion cells. Journal of Theoretical Biology, 210, 187–199.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell, J. H., Schaller, K. L., Lasher, R. S., Peles, E., & Levinson, S. R. (2000). Sodium channel Nav 1.6 is localized at Nodes of Ranvier, Dendrites, and Synapses. Proceedings of the National Academy of Sciences of the United States of America, 97, 5616–5620.

    Article  PubMed  CAS  Google Scholar 

  • Daneshvar, S., & Ghassemian, H. (2008). A feedback retina model for improving medical images fusion. In Proc. IEEE EMBS conf. (pp. 4035–4038).

  • Dokos, S., Suaning, G. J., & Lovell, N. H. (2005). A bidomain model of epiretinal stimulation. Ieee Transactions on Neural Systems and Rehabilitation Engineering, 13, 137–146.

    Article  PubMed  Google Scholar 

  • Eng, D. L., Gordon, T. R., Kocsis, J. D., et al. (1990). Current-clamp analysis of a time-dependent rectification in rat optic nerve. Journal of Physiology, 421, 185–202.

    PubMed  CAS  Google Scholar 

  • Gutfreund, Y., Yarom, Y., & Segev, I., (1995). Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: Physiology and modelling. Journal of Physiology, 483, 621–640.

    PubMed  CAS  Google Scholar 

  • Fohlmeister, J. F., & Miller, R. F. (1997a). Impulse encoding menchanisms of ganglion cells in the tiger salamander retina. Journal of Neurophysiology, 78, 1935–1947.

    PubMed  CAS  Google Scholar 

  • Fohlmeister, J. F., & Miller, R. F. (1997b). Mechanisms by which cell geometry controls repetitive impulse firing in retinal ganglion cells. Journal of Neurophysiology, 78, 1948–1964.

    PubMed  CAS  Google Scholar 

  • Fried, S. I., Lasker, A. C. W., Desai, N. J., Eddington, D. K., & Rizzo, J. F. (2009). Third axonal sodium-channel bands shape the response to electric stimulation in retinal ganglion cells. Journal of Neurophysiolog, 101, 1972–1987.

    Article  Google Scholar 

  • Henderson, D., & Miller, R. F. (2003). Evidence for low-voltage-activated (LVA) calcium currents in the dendrites of tiger salamander retinal ganglion cells. Visual Neuroscience, 20, 141–152.

    Article  PubMed  Google Scholar 

  • Henderson, D., & Miller, R. F. (2007). Low-voltage activated calcium currents in ganglion cells of the tiger salamander retina: Experiment and simulation. Visual Neuroscience, 24, 37–51.

    Article  PubMed  Google Scholar 

  • Hines, M. (1993). NEURON a program for simulation of nerve equations. In F. Eckman. (Ed.), Neural systems: Analysis and modeling. Norwell: Kluwer Academic Publishers.

    Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.

    PubMed  CAS  Google Scholar 

  • Klink, R., & Alonso, A. (1993). Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. Journal of Neurophysiology, 70, 144–157.

    PubMed  CAS  Google Scholar 

  • Lampl, I., & Yarom, Y. (1997). Subthreshold oscillations and resonant behavior: Two manifestations of the same mechanism. Journal of Neuroscience, 78, 325–341.

    Article  CAS  Google Scholar 

  • Lee, S. C., Hayashida, Y., & Ishida, A. T. (2003). Availability of low-threshold Ca current in retinal ganglion cells. Journal of Neurophysiology, 90, 3888–3901.

    Article  PubMed  CAS  Google Scholar 

  • Llinas, R. R., & Steriade, M. (2006). Bursting of thalamic neurons and states of vigilance. Journal of Neurophysiologgy, 95, 3297–3308.

    Article  Google Scholar 

  • Margolis, D. J., & Detwiler, P. B. (2007). Different mechanisms generate maintained activity in ON and OFF retinal ganglion cells. Journal of Neuroscience, 27(22), 5994–6005.

    Article  PubMed  CAS  Google Scholar 

  • Margolis, D. J., Gartland, A. J., Euler, T., & Detwiler, P. B. (2010). Dendritic calcium signaling in ON and OFF mouse retinal ganglion cells. Journal of Neuroscience, 30(21), 7127–7138.

    Article  PubMed  CAS  Google Scholar 

  • Margolis, D. J., Newkirk, G., Euler, T., & Detwiler, P. B. (2008). Functional stability of retinal ganglion cells after degeneration-induced changes in synaptic input. Journal of Neuroscience, 28, 6526–6536.

    Article  PubMed  CAS  Google Scholar 

  • Martins, S. F., Sousa, L. A., & Martins, J. C. (2007). Additive logistic regression applied to retina modelling. In Proc. IEEE conf. im. proc. (pp. 1437–1440).

  • McCormick, D. D., & Pape, H. C. (1990). properties of hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. Journal of Physiology, 431, 192–318.

    Google Scholar 

  • Miller, R. F., Stenback, K., Henderson, D., & Sikora, M. (2002). How voltage-gated ion channels alter the functional properties of ganglion and amacrine cell dendrites. Archives Italiennes de Biologie, 140(4), 347–359.

    PubMed  CAS  Google Scholar 

  • Mitra, P., & Miller, R. F. (2007). Mechanism underlying rebound excitation in retinal ganglion cells. Visual Neuroscience, 24, 709–731.

    PubMed  Google Scholar 

  • Mitra, P., & Miller, R. F. (2007b). Normal and rebound impulse firing in retinal ganglion cells. Visual Neuroscience, 24, 79–90.

    PubMed  Google Scholar 

  • Morillasa, C., Romero, S., Martinez, A., Pelayo, F. J., Ros, E., & Fernandez, E. (2007). A design framework to model retinas. BioSystems, 87, 156–163.

    Article  Google Scholar 

  • Murphy, G. J., & Rieke, F. (2006). Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron, 52, 511–524.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, B. J., Isayama, T., Richardson, R., & Berson, D. M. (2002). Intrinsic physiological properties of cat retinal ganglion cells. Journal of Physiology, 538(3), 787–802.

    Article  PubMed  Google Scholar 

  • Pang, J.-J., Gao, F., & Wu, S. M. (2003). Light-evoked excitatory and inhibitory synaptic inputs to ON and OFF α ganglion cells in the mouse retina. Journal of Neuroscience, 23(14), 6063–6073.

    PubMed  CAS  Google Scholar 

  • Sikora, M. A., Gottesman, J., & Miller, R. F. (2005). A computational model of the ribbon synapse. Journal of Neuroscience Methods, 145, 47–61.

    Article  PubMed  Google Scholar 

  • Stasheff, S. F. (2008). Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. Journal of Physiology, 99, 1408–1421

    Google Scholar 

  • Tabata, T., & Ishida, A. T. (1996). Transient and sustained depolarization of retinal ganglion cells by I-h. Journal of Neurophysiology, 75, 1932–1943.

    PubMed  CAS  Google Scholar 

  • Traub, R. D., Buhl, E. H., Gloveli, T., & Whittington, M. A. (2003). Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent NaP conductance or by blocking BK channels. Journal of Neurophysiology, 89, 909–921.

    Article  PubMed  CAS  Google Scholar 

  • Usui, S., Kamiyama, Y., Ogura, T., Ishihara, A., & Hamada, T. (1997). Physiological engineering model of the outer retina. In Proc. IEEE conf. neur. netw. (pp. 2309–2314).

  • Wang, X.-J., Rinzel, J., & Rogawski, M. (1991). A model of the T-type calcium current and the low-threshold spike in thalamic neurons. Journal of Neurophysiology, 66, 839–850.

    PubMed  CAS  Google Scholar 

  • Wei, H., & Guan, X. D. (2008). The simulation of early vision in biological retina and analysis on its performance. In Proc. cong. image sign. proc. (pp. 413–417).

  • van Welie, I., Remme, M. W. H., van Hooft, J., & Wadman, W. J. (2006). Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum. Journal of Physiology, 576(1), 203–214.

    Article  PubMed  Google Scholar 

  • Wohrer, A., Kornprobst, P., & Vieville, T. (2008). From light to spikes: A large-scale retina simulator. In Proc. int. conf. neur. net. (pp. 4562–4570).

Download references

Acknowledgements

The authors wish to thank David Grayden for stimulating discussions that were of invaluable help in carrying out this work and Michael Eager for his help with NEURON software. This research was supported by the Australian Research Council (ARC) through its Special Research Initiative (SRI) in Bionic Vision Science and Technology grant to Bionic Vision Australia (BVA). The Bionic Ear Institute acknowledges the support it receives from the Victorian Government through its Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Kameneva.

Additional information

Action Editor: Catherine E. Carr

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kameneva, T., Meffin, H. & Burkitt, A.N. Modelling intrinsic electrophysiological properties of ON and OFF retinal ganglion cells. J Comput Neurosci 31, 547–561 (2011). https://doi.org/10.1007/s10827-011-0322-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0322-3

Keywords

Navigation