Skip to main content
Log in

The domain of neuronal firing on a plane of input current and conductance

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The activation of neurotransmitter receptors increases the current flow and membrane conductance and thus controls the firing rate of a neuron. In the present work, we justified the two-dimensional representation of a neuronal input by voltage-independent current and conductance and obtained experimentally and numerically a complete input-output (I/O) function. The dependence of the steady-state firing rate on the input current and conductance was studied as a two-parameter I/O function. We employed the dynamic patch clamp technique in slices to get this dependence for the whole domain of two input signals that evoke stationary spike trains in a single neuron (Ω-domain). As found, the Ω-domain is finite and an additional conductance decreases the range of spike-evoking currents. The I/O function has been reproduced in a Hodgkin-Huxley-like model. Among the simulated effects of different factors on the I/O function, including passive and active membrane properties, external conditions and input signal properties, the most interesting were: the shift of the right boundary of the Ω-domain (corresponding to the exCitation block) leftwards due to the decrease of the maximal potassium conductance; and the reduction of the Ω-domain by the decrease of the maximal sodium concentration. As found in experiments and simulations, the Ω-domain is reduced by the decrease of extracellular sodium concentration, by cooling, and by adding slow potassium currents providing interspike interval adaptation; the Ω-domain height is increased by adding color noise. Our modeling data provided a generalization of I/O dependencies that is consistent with previous studies and our experiments. Our results suggest that both current flow and membrane conductance should be taken into account when determining neuronal firing activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arsiero, M., Luscher, H., Lundstrom, B. N., & Giugliano, M. (2007). The impact of input fluctuations on the frequency–current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. The Journal of Neuroscience, 27(12), 3274–3284.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi, D., Marasco, A., Limongiello, A., Marchetti, C., Marie, H., Tirozzi, B., & Migliore, M. (2012). On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons. Journal of Computational Neuroscience, 33(2), 207–225.

    Article  PubMed  Google Scholar 

  • Borg-Graham, L. (1999). Interpretations of data and mechanisms for hippocampal pyramidal cell models. In E. Jones, P. Ulinski, & P. Peters (Eds.), Cerebral cortex, 13: Cortical models (pp. 19–138).

  • Borg-Graham, L. J., Monier, C. & Frégnac, Y. (1998). Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Neuron, 393(6683), 369–373.

  • Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94, 3637–3642.

    Article  PubMed  Google Scholar 

  • Brizzi, L., Meunier, C., Zytnicki, D., Donnet, M., Hansel, D., Lamotte D’Incamps, B., & Van Vreeswijk, C. (2004). How shunting inhibition affects the discharge of lumbar motoneurones: a dynamic clamp study in anaesthetized cat. Journal of Physiology, 558(2), 671–683.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown, D. A., & Passmore, G. M. (2009). Neural KCNQ (Kv7) channels. British Journal of Pharmacology, 156(8), 1185–1195.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chadderton, P., Schaefer, A. T., Williams, S. R., & Margrie, T. W. (2014). Sensory-evoked synaptic integration in cerebellar and cerebral cortical neurons. Nature Reviews Neuroscience, 15, 71–83.

    Article  CAS  PubMed  Google Scholar 

  • Chance, F. S., Abbott, L. F., & Reyes, A. D. (2002). Gain modulation from background synaptic input. Neuron, 35, 773–782.

    Article  CAS  PubMed  Google Scholar 

  • Chizhov, A. V., Smirnova, E. Y., Kim, K. K., & Zaitsev, A. V. (2014). A simple Markov model of sodium channels with a dynamic threshold. Journal of Computational Neuroscience, 37(1), 181–191.

    Article  CAS  PubMed  Google Scholar 

  • Demarque, M., Villeneuve, N., Manent, J. B., Becq, H., Represa, A., Ben-Ari, Y., & Aniksztejn, L. (2004). Glutamate transporters prevent the generation of seizures in the developing rat neocortex. The Journal of Neuroscience, 24(13), 3289–3294.

    Article  CAS  PubMed  Google Scholar 

  • Destexhe, A., & Rudolph-Lilith, M. (2014). Noisy dendrites: Models of dendritic integration in vivo. In H. Cuntz, M. W. H. Remme, & B. Torben-Nielsen (Eds.), The computing dendrite (pp. 173–190). New York: Springer. ISBN 978-1-4614-8093-8.

    Chapter  Google Scholar 

  • Dovzhenok, A., & Kuznetsov, A. S. (2012). Exploring neuronal bistability at the depolarization block. PLoS ONE, 7(8), e42811.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eccles, J. C. (1957). The physiology of nerve cells. Baltimore: The Johns Hopkins Press.

    Google Scholar 

  • Fellous, J. M., Rudolph, M., Destexhe, A., & Sejnowski, T. J. (2003). Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience, 122, 811–829.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandez, F. R., & White, J. A. (2009). Reduction of spike afterdepolarization by increased leak conductance alters interspike interval variability. The Journal of Neuroscience, 29(4), 973–986.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandez, F. R., & White, J. A. (2010). Gain control in CA1 pyramidal cells using changes in somatic conductance. The Journal of Neuroscience, 30(1), 230–241.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandez, F. R., Broicher, T., Truong, A., & White, J. A. (2011). Membrane voltage fluctuations reduce spike frequency adaptation and preserve output gain in CA1 pyramidal neurons in a high-conductance state. The Journal of Neuroscience, 31(10), 3880–3893.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fontaine, B., Peña, J. L., & Brette, R. (2014). Spike-threshold adaptation predicted by membrane potential dynamics in vivo. PLoS Computational Biology, 10(4), e1003560.

    Article  PubMed Central  PubMed  Google Scholar 

  • Graham, L. J., & Schramm, A. (2009). In vivo dynamic clamp: The functional impact of synaptic and intrinsic conductances in visual cortex. In A. Destexhe, & T. Bal (Eds.), Dynamic clamp: From principles to applications. Springer Press.

  • Gunay, C., Edgerton, J. R., & Jaeger, D. (2008). Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. The Journal of Neuroscience, 28(30), 7476–7491.

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson, E. B., Edgerton, J. R., & Jaeger, D. (2011). The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. Journal of Computational Neuroscience, 30, 301–321.

    Article  PubMed Central  PubMed  Google Scholar 

  • Higgs, M. H., Slee, S. J., & Spain, W. J. (2006). Diversity of gain modulation by noise in neocortical neurons: regulation by the slow afterhyperpolarization conductance. The Journal of Neuroscience, 26(34), 8787–8799.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical systems in neuroscience: the geometry of excitability and bursting. The MIT press.

  • Jahr, C. E., & Stevens, C. F. (1990). Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. The Journal of Neuroscience, 10(9), 3178–3182.

    CAS  PubMed  Google Scholar 

  • Kispersky, T. J., Caplan, J. S., & Marder, E. (2012). Increase in sodium conductance decreases firing rate and gain in model neurons. The Journal of Neuroscience, 32(32), 10995–11004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kopell, N., Ermentrout, G. B., Whittington, M. A., & Traub, R. D. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences of the United States of America, 97(4), 1867–1872.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuang, S., Wang, J., Zeng, T., & Cao, A. (2008). Thermal impact on spiking properties in Hodgkin-Huxley neuron with synaptic stimulus. Journal of Physics, 70(1), 183–190.

    Google Scholar 

  • Kuhn, A., Aertsen, A., & Rotter, S. (2004). Neuronal integration of synaptic input in the fluctuation-driven regime. The Journal of Neuroscience, 24(10), 2345–2356.

    Article  CAS  PubMed  Google Scholar 

  • Ladenbauer, J., Augustin, M., & Obermayer, K. (2014). How adaptation currents change threshold, gain, and variability of neuronal spiking. Journal of Neurophysiology, 111, 939–953.

    Article  PubMed  Google Scholar 

  • Lundstrom, B. N., Hong, S., Higgs, M. H., & Fairhall, A. L. (2008). Two computational regimes of a single-compartment neuron separated by a planar boundary in conductance space. Neural Computation, 20(5), 1239–1260.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382(6589), 363–366.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, S. J., & Silver, R. A. (2003). Shunting inhibition modulates gain during synaptic excitation. Neuron, 38, 433–445.

    Article  CAS  PubMed  Google Scholar 

  • Monier, C., Chavane, F., Baudot, P., Graham, L. & Fregnac, Y. (2003). Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37, 663–680.

  • Monier, C., Fournier, J., & Frégnac, Y. (2008). In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. Journal of Neuroscience Methods, 169(2), 323–365.

    Article  CAS  PubMed  Google Scholar 

  • O’Leary, T., van Rossum, M. C. W., & Wyllie, D. J. (2010). Homeostasis of intrinsic excitability in hippocampal neurones: dynamics and mechanism of the response to chronic depolarization. Journal of Physiology, 588(1), 157–170.

    Article  PubMed Central  PubMed  Google Scholar 

  • Paré, D., Shink, E., Gaudreau, H., Destexhe, A., & Lang, E. J. (1998). Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 79(3), 1450–1460.

    PubMed  Google Scholar 

  • Platkiewicz, J., & Brette, R. (2010). A threshold equation for action potential initiation. PLoS Computational Biology, 6(7), e1000850.

    Article  PubMed Central  PubMed  Google Scholar 

  • Platkiewicz, J., & Brette, R. (2011). Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration. PLoS Computational Biology, 7, e1001129.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pokrovskii, A. N. (1978). Effect of synapse conductivity on spike development. Biofizika, 23(4), 649–653.

    CAS  PubMed  Google Scholar 

  • Prescott, S. A., Ratté, S., De Koninck, Y., & Sejnowski, T. J. (2006). Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons. The Journal of Neuroscience, 26(36), 9084–9097.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Radmilovich, M., Fernandez, A., & Trujillo-Cenoz, O. (2003). Environment temperature affects cell proliferation in the spinal cord and brain of juvenile turtles. Journal of Experimental Biology, 206, 3085–3093.

    Article  PubMed  Google Scholar 

  • Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity. Experimental Neurology, 1, 491–527.

    Article  CAS  PubMed  Google Scholar 

  • Rall, W. (1969). Time constants and electrotonic length of membrane cylinders and neurons. Biophysical Journal, 9(12), 1483–1508.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rudolph, M., Pospischil, M., Timofeev, I., & Destexhe, A. (2007). Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. The Journal of Neuroscience, 27(20), 5280–5290.

    Article  CAS  PubMed  Google Scholar 

  • Shriki, O., Hansel, D., & Sompolinsky, H. (2003). Rate models for conductance-based cortical neuronal networks. Neural Computation, 15(8), 1809–1841.

    Article  PubMed  Google Scholar 

  • Silver, R. A. (2010). Neuronal arithmetic. Nature Reviews Neuroscience, 11(7), 474–489.

    Article  CAS  PubMed  Google Scholar 

  • Sompolinsky, H., & White, O.L. (2005) Theory of large recurrent networks: from spikes to behavior. In C. C. Chow, B. Gutkin, D. Hansel, C. Meunier, & J. Dalibard (Eds.), Methods and models in neurophysics (pp. Ch.8 267–340). Elsevier.

  • Storm, J. F., Vervaeke, K., Hu, H., & Graham, L. J. (2009). Functions of the persistent Na + current in cortical neurons revealed by dynamic clamp. In A. Destexhe, T. Bal (eds.), Dynamic-clamp, springer series in computational neuroscience 1. doi: 10.1007/978-0-387-89279-5_8.

  • Vasilenko, V. Y., Belyavskii, E. M., & Gurin, V. N. (1989). Temperature dependence of neuronal activity in guinea pig hypothalamic and Hippocampal slices. Neurophysiologie, 21, 259.

    Article  Google Scholar 

  • Volgushev, M., Vidyasagar, T. R., Chistiakova, M., Yousef, T., & Eysel, U. T. (2000). Membrane properties and spike generation in rat visual cortical cells during reversible cooling. Journal of Physiology, 522(Pt 1), 59–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu, H., & Robertson, R. M. (1994). Effects of temperature on properties of flight neurons in the locust. Journal of Comparative Physiology A, 175(2), 193–202.

    Article  Google Scholar 

  • Yu, Y., Shu, Y., & McCormick, D. A. (2008). Cortical action potential back propagation explains spike threshold variability and rapid-onset kinetics. The Journal of Neuroscience, 28(29), 7260–7272.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The reported study was supported by RFBR, research projects 13-04-00244 to K.Kh.K., 15-04-06234 to E.Yu.S., 14-04-00413 and 15-34-20514 to A.V.Z.

Conflict of interest

The authors declare that there search was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Smirnova.

Additional information

Action Editor: Alain Destexhe

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 177 kb)

Online Resource 2

(PDF 287 kb)

Online Resource 3

(PDF 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, E.Y., Zaitsev, A.V., Kim, K.K. et al. The domain of neuronal firing on a plane of input current and conductance. J Comput Neurosci 39, 217–233 (2015). https://doi.org/10.1007/s10827-015-0573-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-015-0573-5

Keywords

Navigation