Skip to main content
Log in

Influence of preparation method on phase formation, structural and magnetic properties of BiFeO3

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Nanocrystalline BiFeO3 was synthesized utilizing two distinct techniques: auto-combustion and ceramic. A unique auto-combustion process employing glycine as a fuel has been used to synthesize single-phase BiFeO3 nanoparticles. Well mixed metal nitrates combust, producing BiFeO3 nanoparticles, which crystallize in a rhombohedral perovskite structure. The average particle size of 16 nm was estimated using Rietveld refinement of the X-ray diffraction data. The X-ray diffraction data for the solid-state prepared sample shows the formation of BiFeO3 with the same rhombohedral perovskite structure with an average particle size of 101 nm with additional secondary phases corresponding to Bi2Fe4O9/Bi2O3 and Bi25FeO39. By increasing the sintering time Bi2Fe4O9/Bi2O3 phase disappeared after 3 h of heating and reappeared again after 5 h of sintering. The changing of sintering time was not able to reduce the Bi25FeO39 formation. The TEM estimated average particle size confirms the XRD analysis. M(H) hysteresis loop shows a G-type magnetic structure. Due to the small particle size, the periodicity of canted spins was broken, and the magnetization of the auto-combustion prepared sample is approximately eight times greater than the ceramic prepared one. The importance of pure phase BiFeO3 came from its potential applications in sensors, data storage, spintronics devices, and reports of greatly enhanced ferroelectricity in epitaxially strained thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as all raw data were generated by the author.

References

  1. Y.M. Abbas, A.B. Mansour, S.E. Ali, A.H. Ibrahim, Investigation of structural and magnetic properties of multiferroic La1-xYxFeO3 Perovskites, prepared by citrate auto-combustion technique. J. Magn. Magn. Mater. 482, 66–74 (2019)

    Article  CAS  Google Scholar 

  2. S. Falahatnezhad, H. Maleki, A.M. Badizi, M. Noorzadeh, Influence of synthesis method on the structural, optical and magnetic properties of BiFeO3–ZnFe2O4 nanocomposites. J. Mater. Sci. Mater. Electron. 30(17), 15972 (2019)

    Article  CAS  Google Scholar 

  3. A. Das, S. Chatterjee, S. Bandyopadhyay, D. Das, Enhanced magnetoelectric properties of BiFeO3 on formation of BiFeO3/SrFe12O19 nanocomposites, J. Appl. Phys. 119, 234102 (2016)

  4. J.M. Hu, L.Q. Chen, C.W. Nan, Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater. 28(1), 15–39 (2016)

    Article  CAS  Google Scholar 

  5. J.A. Mundy, C.M. Brooks, M.E. Holtz, J.A. Moyer, H. Das, A.F. Rébola, J.T. Heron, J.D. Clarkson, S.M. Disseler, Z. Liu, A. Farhan, R. Held, R. Hovden, E. Padgett, Q. Mao, H. Paik, R. Misra, L.F. Kourkoutis, E. Arenholz, A. Scholl, J.A. Borchers, W.D. Ratcliff, R. Ramesh, C.J. Fennie, P. Schiffer, D.A. Muller, D.G. Schlom, Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 537(7621), 523–527 (2016)

    Article  CAS  Google Scholar 

  6. S.J. Chang, M.H. Chung, M.Y. Kao, S.F. Lee, Y.H. Yu, C.C. Kaun, T. Nakamura, N. Sasabe, S.J. Chu, Y.C. Tseng, GdFe0.8Ni0.2O3: a multiferroic material for low power spintronic devices with high storage capacity, ACS Appl. Mater. Interfaces 11, 31562–31572 (2019)

  7. N.G. Imam, G. Aquilanti, A.A. Azab, S.E. Ali, Correlation between structural asymmetry and magnetization in Bi-doped LaFeO3 perovskite: a combined XRD and synchrotron radiation XAS study. J Mater Sci: Mater Electron 32, 3361–3376 (2021)

    CAS  Google Scholar 

  8. C.E. Camayo, S. J. Gaona, C. F. V. Raigoza, Effect of La and Pr substitution on structure and magnetic properties of Pechini synthesized BiFeO3, J. Magn. Magn. Mater. 527, 167733 (2021)

  9. M. Valant, A. Axelsson, N. Alford, Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem. Mater. 19(22), 5431–5436 (2007)

    Article  CAS  Google Scholar 

  10. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Article  CAS  Google Scholar 

  11. P. Fischer, M. PoIomska, I. Sosnowska, M. Szymanski, Temperature dependence of the crystal and magnetic structures of BiFeO3. J. Phys. C Solid State Phys. 13, 1931–1940 (1980)

    Article  CAS  Google Scholar 

  12. P. Suresh, B.K. Hazra, B.R. Kumar, T. Chakraborty, P.D. Babu, S. Srinath, Lattice effects on the multiferroic characteristics of (La, Ho) co-substituted BiFeO3, J. Alloy. Compd. 863, 158719 (2021)

  13. G. Le Bras, P. Bonville, D. Colson, A. Forget, N. Genand-Riondet, R. Turbot, Effect of La doping in the multiferroic compound BiFeO3. Physica B: Physics of Condensed Matter 406(8), 1492–1495 (2011)

    Article  Google Scholar 

  14. R.Z. Xiao, T. Hu, X. Yuan, J. Zhou, X. Ma, D. Fu, Studies of La- and Pr-driven reverse distortion of FeO6 octahedral structure, magnetic properties and hyperfine interaction of BiFeO3 powder. RSC Adv. 8, 12060–12068 (2018)

    Article  CAS  Google Scholar 

  15. A. Shahid, F. Muhammad, H.K. Ali, M. Asif, R. Shahid, N. Shahzad, Co-existence of magnetic and electric ferroic orders in La-substituted BiFeO3. Results Phys. 12, 1269–1275 (2019)

    Article  Google Scholar 

  16. T. Priyanka, S. Fouran, V. Brinda, K. Hetal, D.K. Shuklad, R. Sudhindra, D.G. Kuberkar, Stiffening of phonons with enhanced hybridization and structural phase transformation upon Pr-doping in BiFeO3. Physica B 571, 247–251 (2019)

    Article  Google Scholar 

  17. D. Varshney, S. Poorva, S. Satapathy, P.K. Gupta, Structural, magnetic and dielectric properties of Pr-modified BiFeO3 multiferroic. J. Alloy. Compd. 584, 232–239 (2014)

    Article  CAS  Google Scholar 

  18. F. Pedro-García, F. Sanchez-De Jesús, C.A. Cortes-Escobedo, A. Barba-Pingarron, A.M. Bolarín-Miro, Mechanically assisted synthesis of multiferroic BiFeO3: effect of synthesis parameters, J. Alloy. Compd. 711, 77–84 (2017)

  19. A. Ramírez, N. Solarte, L. Singh, J. Coaquira, S.J. Gaona, Investigation of the magnetic properties of SrFe12O19 synthesized by the Pechini and combustion methods, J. Magn. Magn. Mater. 438, 100–106 (2017)

  20. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2(2), 65–71 (1969)

    Article  CAS  Google Scholar 

  21. S.F. Mansour, N.G. Imam, S. Goda, M.A. Abdo, Constructive coupling between BiFeO3 and CoFe2O4; promising magnetic and dielectric properties. JMRTEC. 9(2), 1434–1446 (2020)

    CAS  Google Scholar 

  22. M.N. Akhtar, M. Yousaf, M.A. Baqir, K.M. Batoo, M.A. Khan, Pr–Co co-doped BFO multiferroics nanomaterials for absorber applications. Ceram. Int. 47(2), 2144–2154 (2021)

    Article  CAS  Google Scholar 

  23. N.I. Ilić, A.S. Dzˇunuzović, J.D. Bobić, B.S. Stojadinović, P. Hammer, M.M. Vijatović Petrović, Z.D. Dohčević-Mitrović, B.D. Stojanović, Structure and properties of chemically synthesized BiFeO3. Influence of fuel and complexing agent, Ceram. Int. 41, 69–77 (2015)

  24. S. Parwin, J. Parui, Time-temperature-transformation of BiFeO3 phase synthesized by citrate–nitrate route and a synergetic effect for its stabilization, J. Chem. Thermodynamics 156, 106347 (2021)

  25. M. Muneeswaran, A. Akbari-Fakhrabadi, M.A. Gracia-Pinilla, J.C. Denardin, N.V. Giridharan, Realization of structural transformation for the enhancement of magnetic and magneto capacitance effect in BiFeO3–CoFe2O4 ceramics for energy storage application. Sci. Rep. 11, 2265 (2021)

    Article  CAS  Google Scholar 

  26. Y.M. Abbas, S.A. Mansour, M.H. Ibrahim, S.E. Ali, Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite. J. Magn. Magn. Mater. 323, 2748–2756 (2011)

    Article  CAS  Google Scholar 

  27. Y.M. Abbas, S.A. Mansour, M.H. Ibrahim, S.E. Ali, Structural and magnetic properties of nanocrystalline stannic substituted cobalt ferrite. J. Magn. Magn. Mater. 324, 2781 (2012)

    Article  CAS  Google Scholar 

  28. S. Layek, H.C. Verma, Magnetic and dielectric properties of multiferroic BiFeO3 nanoparticles synthesized by novel citrate combustion method. Adv. Mater. Lett. 3, 533–538 (2012)

    Article  Google Scholar 

  29. M. Birkholz, Thin film analysis by X-ray scattering (Wiley- VCH Verlag GmbH and Co., KGaA, Weinheim, (2006)

  30. S. Debnath, K. Deb, B. Saha, R. Das, X-ray diffraction analysis for the determination of elastic properties of zinc-doped manganese spinel ferrite nanocrystals (Mn0.75Zn0.25Fe2O4), along with the determination of ionic radii, bond lengths, and hopping lengths, J. Phy. Chem. Solid 134, 105–114 (2019)

  31. S.J. Paswan, S. Kumari, M. Kar, A. Singh, H. Pathak, J.P. Borah, L. Kumar, Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature, J. Phys. Chem. Solids 151, 109928 (2021)

  32. P.S.V. Michelle, S. Gautam, K.H. Chae, R.M.S. Rao, C. Sudhakar, Wide-range tunable bandgap in Bi1−xCaxFe1−yTiyO3−δ nanoparticles via oxygen vacancy induced structural modulations at room temperature. Mater. Res. Express 2(9) 095012 (2015)

  33. K.V. Chandekar, K.M. Kant, Strain induced magnetic anisotropy and 3d7 ions effect in CoFe2O4 nanoplatelets. Superlattice. Microst. 111, 610–627 (2017)

    Article  CAS  Google Scholar 

  34. S.M. Selbach, T. Tybell, M.-A. Einarsrud, T. Grande, The ferroic phase transitions of BiFeO3. Adv. Mater. 20, 3692 (2008)

    Article  CAS  Google Scholar 

  35. C. Tian, Q. Yao, Z. Tong, G. Rao, J. Deng, Z. Wang, J. Wang, H. Zhou, J. Zhao, The influence of Nd substitution on microstructural, magnetic, and microwave absorption properties of BiFeO3 nanopowders, J. Alloy. Compd. 859, 157757 (2021)

  36. N. Romanova, Synthesis features, thermal behavior, and physical properties of Bi10Fe6Ti3O30 ceramic material, Mater. Che. Phy. 263, 124386 (2021)

  37. S. Chandel, P. Thakur, S.S. Thakur, A. Sharma, J.H. Hsu, M. Tomar, V. Gupta, A. Thakur, Investigation of excess and deficiency of iron in BiFeO3. Mater. Chem. Phys. 204, 207–215 (2018)

    Article  CAS  Google Scholar 

  38. P. Tang, D. Kuang, S. Yang, Y. Zhang, Structural, morphological, and multiferroic properties of the hydrothermally grown Gadolinium (Gd) and Manganese (Mn) doped sub-micron bismuth ferrites. J. Alloys Compd. 656, 912–919 (2016)

    Article  CAS  Google Scholar 

  39. S. Madolappa, A.V. Anupama, P.W. Jaschin, K.B.R. Varma, B. Sahoo, Magnetic and ferroelectric characteristics of Gd3+ and Ti4+ co-doped BiFeO3 ceramics. J. Bull. Mater. Sci. 39, 593–601 (2016)

    Article  CAS  Google Scholar 

  40. R. Gupta, S. Chaudhary, R.K. Kotnala, Interfacial Charge Induced Magnetoelectric Coupling at BiFeO3/BaTiO3 Bilayer Interface. ACS Appl. Mater. Inter. 7, 8472–8479 (2015)

    Article  CAS  Google Scholar 

  41. C.H. Sim, A.Z.Z. Pan, J. Wang, Thickness and Coupling Effects in Bilayered Multiferroic CoFe2O4/Pb(Zr0.52Ti0.48)O3 Thin Films. J. Appl. Phys. 103, 124109 (2008)

  42. S. Li, C. Wang, Q. Shen, L. Zhang, Residual Strain-mediated multiferroic properties of Ba0.85Ca0.15Zr0.9Ti0.1O3/La0.67-Ca0.33MnO3 epitaxial heterostructures. ACS Appl. Mater. Int. 11, 30376–30383 (2019)

Download references

Acknowledgements

The author would deeply like to thank Dr. Mirco D'Incau (Department of Civil, Environmental & Mechanical Engineering, University of Trento), Dr. Saliou Diouf (Department of Materials Engineering and Industrial Technologies, University of Trento), and X- Rays group in physics department, faculty of Science University of Trento for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shehab E. Ali.

Ethics declarations

Conflict of interests

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.E. Influence of preparation method on phase formation, structural and magnetic properties of BiFeO3. J Electroceram 48, 95–101 (2022). https://doi.org/10.1007/s10832-021-00276-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00276-1

Keywords

Navigation