Skip to main content

Advertisement

Log in

Conserving insect assemblages in urban landscapes: accounting for species-specific responses and imperfect detection

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Understanding how global environmental change impacts insect biodiversity is central to the core principals of conservation biology. To preserve the ecosystem services provided by insects in cities, it is crucial to understand how insect species are influenced by the degree of urbanization of the surrounding landscape. Using a hierarchical occupancy–detection model, we estimated the effect of urbanization on heteropteran bug species richness and occupancy, an approach that concurrently accounts for species-specific responses and imperfect detection. We found that species richness decreased along a gradient of increasing urbanization. This trend corresponded well with species-specific trends, as approximately two-thirds of all herbivores and predatory species experienced a strong mean negative response to urbanization. These results indicate that many species are potentially at risk of local extinction as cities grow and expand in the future. A second group of species, however, showed a weak mean negative response, indicating that they are ubiquitous urban species that thrive regardless of the surrounding degree of urban disturbance. Our research suggests that as cities develop, many of the species that are currently present will become less likely to occur, and therefore assemblages in the future are likely to become more simplified. In order to preserve or increase insect biological diversity in cities, it is critical to understand how individual species are influenced by urbanization. Our finding that insects display species-specific responses to urbanization has important repercussions for decision makers charged with preserving and improving urban biodiversity and the deliverance of ecosystem services in cities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adler PH, Foottit RG (2009) Introduction. In: Foottit R, Adler P (eds) Insect biodiversity: science and society. Wiley, Chichester, pp 1–6

    Chapter  Google Scholar 

  • Alomar O, Widenmann R (eds) (1999) Zoophytophagous Heteroptera: implications for life history and integrated pest management. Entomological Society of America, Maryland

    Google Scholar 

  • Ambrose DP (2000) Assassin bugs (Reduviidae excluding Triatominae). In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC Press, Boca Raton, pp 695–712

    Chapter  Google Scholar 

  • Berenbaum M (1996) Bugs in the system: insects and their impact on human affairs. Helix Books, Cambridge

    Google Scholar 

  • Braman SK (2000) Damsel bugs (Nabidae). In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC Press, Boca Raton, pp 639–656

    Chapter  Google Scholar 

  • Cardinale B, Duffy J, Gonzalez A, Hooper D, Perrings C, Venail P, Narwani A, Mace G, Tilman D, Wardle D, Kinzig A, Daily G, Loreau M, Grace J, Larigauderie A, Srivastava D, Naem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  PubMed  CAS  Google Scholar 

  • Catterall CP (2009) Responses of faunal assemblages to urbanization: global research paradigms and an avian case study. In: McDonnell M, Hahs AK, Breuste J (eds) Ecology of cities and towns: a comparative approach. Cambridge University Press, Cambridge, pp 129–155

    Chapter  Google Scholar 

  • Coll M, Guershon M (2002) Omnivory in terrestrial arthropods: mixing plant and prey diets. Annu Rev Entomol 47:267–297

    Article  PubMed  CAS  Google Scholar 

  • Dorazio R, Royle J (2005) Estimating size and composition of biological communities by modeling the occurrence of species. J Am Statist Assoc 100:389–398

    Article  CAS  Google Scholar 

  • Dorazio R, Royle J, Söderström B, Glimskär A (2006) Estimating species richness and accumulation by modeling species occurrence and detectability. Ecology 87:842–854

    Article  PubMed  Google Scholar 

  • Duffy J (2009) Why biodiversity is important to the functioning of real-world ecosystems. Front Ecol Environ 7:437–444

    Article  Google Scholar 

  • Dunn RR (2005) Modern insect extinctions, the neglected majority. Conserv Biol 19:1030–1036

    Article  Google Scholar 

  • Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S, Schewenius M, Sendstad M, Seto KC, Wilkinson C, Alberti M, Folke C, Frantzeskaki N, Haase D, Katti M, Nagendra H, Niemelä J, Pickett STA, Redman CL, Tidball K (2013) Stewardship of the biosphere in the urban era. In: Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S, Schewenius M, Sendstad M, Seto KC, Wilkinson C (eds) Urbanization, biodiversity and ecosystem services: challenges and opportunities. Springer, Dordrecht, pp 719–746

  • Estes J, Terborgh J, Brashares J, Power M, Berger J, Bond W, Carpenter S, Essington T, Holt R, Jackson J, Marquis R, Oksanen L, Oksanen T, Paine R, Pikitch E, Ripple W, Sandin S, Scheffer M, Schoener T, Shurin J, Sinclair A, Soulé M, Virtanen R, Wardle D (2011) Trophic downgrading of planet earth. Science 333:301–306

    Article  PubMed  CAS  Google Scholar 

  • Eubanks M, Styrsky J, Denno R (2003) The evolution of omnivory in heteropteran insects. Ecology 84:2549–2556

    Article  Google Scholar 

  • Faeth SH, Bang C, Saari S (2011) Urban biodiversity: patterns and mechanisms. Ann NY Acad Sci 1223:69–81

    Article  PubMed  Google Scholar 

  • Fischer J, Lindenmayer DB, Cowling A (2004) The challenge of managing multiple species at multiple scales: reptiles in an Australian grazing landscape. J Appl Ecol 41:32–44

    Article  Google Scholar 

  • Fischer J, Cleeton S, Lyons T, Miller J (2012) Urbanization and the predation paradox: the role of trophic dynamics in structuring vertebrate communities. Bioscience 69:809–818

    Google Scholar 

  • Gaston K (2010) Urbanization. In: Gaston K (ed) Urban ecology. Cambridge University Press, Cambridge, pp 10–34

    Chapter  Google Scholar 

  • Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

    Google Scholar 

  • Hahs AK, McDonnell M (2006) Selecting independent measures to quantify Melbourne’s urban-rural gradient. Landsc Urban Plan 78:435–448

    Article  Google Scholar 

  • Hahs AK, McDonnell M, Breuste J (2009) A comparative ecology of cities and towns: synthesis of opportunities and limitations. In: McDonnell M, Hahs AK, Breuste J (eds) Ecology of cities and towns: a comparative approach. Cambridge University Press, Cambridge, pp 574–596

    Chapter  Google Scholar 

  • Henry T (2009) Biodiversity of Heteroptera. In: Foottit R, Adler P (eds) Insect biodiversity—science and society. Wiley, Chichester, pp 223–263

    Chapter  Google Scholar 

  • Hornung E, Tóthmérész B, Magura T, Vilisics F (2007) Changes of isopod assemblages along an urban-suburban-rural gradient in Hungary. Eur J Soil Bio 43:158–165

    Article  Google Scholar 

  • Horváth R, Magura T, Tóthmérész B (2012) Ignoring ecological demands masks the real effect of urbanization: a case study of ground-dwelling spiders along a rural–urban gradient in a lowland forest in Hungary. Ecol Res 27:1069–1077

    Article  Google Scholar 

  • Iknayan KJ, Tingley MW, Furnas BJ, Beissinger SR (2014) Detecting diversity: emerging methods to estimate species diversity. Trends Ecol Evol 29:97–106

    Article  PubMed  Google Scholar 

  • Institut Cartogràfic de Catalunya (2011) http://www.icc.es. Accessed 25 Feb 2014

  • Institut d’Estadística de Catalunya (2010) http://idescat.cat. Accessed 25 Feb 2014

  • Kéry M (2010) Introduction to WinBUGS for ecologists. A Bayesian approach to regression, ANOVA, mixed models and related analyses. Academic Press, Burlington

    Google Scholar 

  • Kéry M (2011) Towards the modelling of true species distributions. J Biogeogr 38:617–618

    Article  Google Scholar 

  • Kéry M, Royle J (2008) Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys. J Appl Ecol 45:589–598

    Article  Google Scholar 

  • Kotze J, Venn S, Niemelä J, Spence J (2011) Effects of urbanization on the ecology and evolution of arthropods. In: Niemelä J (ed) Urban ecology, patterns processes and applications. Oxford University Press, New York, pp 159–166

    Chapter  Google Scholar 

  • Kremen C, Chaplin-Kremer R (2007) Insects as providers of ecosystem services: crop pollination and pest control. In: Stewart A, New T, Lewis O (eds) Insect conservation biology: proceedings of the royal entomological society’s 23rd symposium. CABI Publishing, Wallingford, pp 349–382

    Chapter  Google Scholar 

  • Lahoz-Monfort JJ, Guillera-Arroita G, Wintle BA (2013) Imperfect detection impacts the performance of species distribution models. Global Ecol Biogeogr. doi:10.1111/geb.12138

    Google Scholar 

  • Lattin JD (1999) Bionomics of the anthocoridae. Annu Rev Entomol 44:207–231

    Article  PubMed  CAS  Google Scholar 

  • Lattin JD (2000) Minute pirate bugs (Anthocoridae). In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC Press, Boca Raton, pp 607–637

    Chapter  Google Scholar 

  • Levin S (1999) Fragile dominion. Perseus Books, Reading

    Google Scholar 

  • Losey J, Vaughan M (2006) The economic value of ecological services provided by insects. Bioscience 56:311–323

    Article  Google Scholar 

  • Luck G, Smallbone L (2010) Species diversity and urbanization: patterns, drivers and implications. In: Gaston K (ed) Urban ecology. Cambridge University Press, Cambridge, pp 88–119

    Chapter  Google Scholar 

  • Lunn D, Spiegelhalter D, Thomas A, Best N (2009) The BUGS project: evolution, critique and future directions. Stat Med 28:3049–3067

    Article  PubMed  Google Scholar 

  • MacKenzie D, Nichols J, Royle A, Pollock K, Hines J, Bailey L (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Elsevier, San Diego

    Google Scholar 

  • Magura T, Lövei GL, Tóthmérész B (2010) Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Global Ecol Biogeogr 19:16–26

    Article  Google Scholar 

  • Magura T, Nagy D, Tóthmérész B (2013) Rove beetles respond heterogeneously to urbanization. J Insect Conserv 17:715–724

    Article  Google Scholar 

  • McCarthy M (2007) Bayesian methods for ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • McDonnell M, Pickett S (1990) Ecosystem structure and function along urban–rural gradients: an unexploited opportunity for ecology. Ecology 71:1232–1237

    Article  Google Scholar 

  • McDonnell M, Hahs AK (2008) The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directions. Landsc Ecol 23:1143–1155

    Article  Google Scholar 

  • McDonnell M, Hahs AK (2013) The future of urban biodiversity research: moving beyond the ‘low-hanging fruit’. Urban Ecosyst 16:397–409

    Article  Google Scholar 

  • McIntyre N (2000) Ecology of urban arthropods: a review and a call to action. Ann Entomol Soc Am 98:825–835

    Article  Google Scholar 

  • McIntyre N, Rango J (2009) Arthropods in urban ecosystems: community patterns as functions of anthropogenic land use. In: McDonnell M, Hahs AK, Breuste J (eds) Ecology of cities and towns: a comparative approach. Cambridge University Press, Cambridge, pp 233–242

    Chapter  Google Scholar 

  • McKinney M (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–889

    Article  Google Scholar 

  • McKinney M (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260

    Article  Google Scholar 

  • McKinney M (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecol 11:161–176

    Article  Google Scholar 

  • McKinney M (2010) Urban futures. In: Gaston K (ed) Urban ecology. Cambridge University Press, Cambridge, pp 287–308

    Chapter  Google Scholar 

  • Moir ML, Vesk PA, Brennan KE, Keith DA, McCarthy MA, Hughes L (2011) Identifying and managing threatened invertebrates through assessments of coextinction risk. Conserv Biol 25:787–796

    Article  PubMed  Google Scholar 

  • New TR (2009) Insect species conservation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Niemelä J, Kotze J (2009) Carabid beetle assemblages along urban to rural gradients: a review. Landsc Urban Plan 92:65–71

    Article  Google Scholar 

  • Perdikis D, Fantinou A, Lykouressis D (2011) Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biol Control 59:13–21

    Article  Google Scholar 

  • Pickett S, Cadenasso M, Grove J, Boone C, Groffman P, Irwin E, Kaushal S, Marshall V, McGrath B, Nilon C, Pouyat R, Szlavecz K, Troy A, Warren P (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manage 92:331–362

    Article  PubMed  CAS  Google Scholar 

  • Pimm SL, Raven P (2000) Biodiversity—extinction by numbers. Nature 403:843–845

    Article  PubMed  CAS  Google Scholar 

  • Pimm SL, Russell G, Gittleman J, Brooks T (1995) The future of biodiversity. Nature 269:347–350

    CAS  Google Scholar 

  • Royle J, Dorazio R (2008) Hierarchical modeling and inference in ecology. The analysis of data from populations, metapopulations and communities. Academic Press, London

    Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Samways MJ (2007) Insect conservation: a synthetic management approach. Annu Rev Entomol 52:465–487

    Article  PubMed  CAS  Google Scholar 

  • Sattler T, Duelli P, Obrist M, Arlettaz R, Moretti M (2010) Response of arthropod species richness and functional groups to urban habitat structure and management. Landsc Ecol 25:941–954

    Article  Google Scholar 

  • Schaefer CW, Kotulski J (2000) Scentless plant bugs (Rhopalidae). In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC Press, Boca Raton, pp 309–319

    Chapter  Google Scholar 

  • Schaefer CW, Panizzi AR (2000) Economic importance of Heteroptera: a general view. In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC Press, Boca Raton, pp 3–8

    Chapter  Google Scholar 

  • Schuh R, Slater J (1995) True bugs of the world (Hemiptera: Heteroptera). Classification and natural history. Cornell University Press, Ithaca

    Google Scholar 

  • Scudder G (2009) The importance of insects. In: Foottit R, Adler P (eds) Insect biodiversity—science and society. Wiley, Chichester, pp 7–32

    Chapter  Google Scholar 

  • Servei Meteorològic de Catalunya (2010) http://www.meteo.cat. Accessed 25 Feb 2014

  • Seto KC, Parnell S, Elmqvist T (2013) A global outlook on urbanization. In: Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S, Schewenius M, Sendstad M, Seto KC, Wilkinson C (eds) Urbanization, biodiversity and ecosystem services: challenges and opportunities. Springer, Dordrecht, pp 1–12

  • Shreeve TG, Dennis RLH (2011) Landscape scale conservation: resources, behavior, the matrix and opportunities. J Insect Conserv 15:179–188

    Article  Google Scholar 

  • Stork N (2010) Re-assessing current extinction rates. Biodivers Conserv 19:357–371

    Article  Google Scholar 

  • Straub C, Finke D, Snyder W (2008) Are the conservation of natural enemy biodiversity and biological control compatible goals? Biol Control 45:225–237

    Article  Google Scholar 

  • Sturtz S, Ligges U, Gelman A (2005) R2WinBUGS: a package for running WinBUGS from R. J Stat Softw 12:1–16

    Google Scholar 

  • Sweet MH (2000) Seed and chinch bugs (Lygaeoidea). In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC Press, Boca Raton, pp 143–264

    Chapter  Google Scholar 

  • Tóthmérész B, Máthé I, Balázs E, Magura T (2011) Responses of carabid beetles to urbanization in Transylvania (Romania). Landsc Urban Plan 101:330–337

    Article  Google Scholar 

  • Waldbauer G (2003) What good are bugs?. Harvard University Press, Cambridge

    Google Scholar 

  • Weeks J, Larson D, Fugate D (2005) Patterns of urban land use as assessed by satellite imagery: an application to Cairo, Egypt. In: Entwisle B, Rindfuss Stern P (eds) Population, land use, and environment: research directions. The National Academies Press, San Diego, pp 265–286

    Google Scholar 

  • Weirauch C, Schuh R (2011) Systematics and evolution of Heteroptera: 25 years of progress. Annu Rev Entomol 56:487–510

    Article  PubMed  CAS  Google Scholar 

  • Wheeler AG (2000a) Plant bugs (Miridae) as plant pest. In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC Press, Boca Raton, pp 37–83

    Google Scholar 

  • Wheeler AG (2000b) Predacious plant bugs (Miridae). In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC Press, Boca Raton, pp 657–693

    Chapter  Google Scholar 

  • Wheeler AG, Hoebeke ER (2009) Adventive (non-native) insects: importance to science and society. In: Foottit R, Adler P (eds) Insect biodiversity—science and society. Wiley, Chichester, pp 475–521

    Chapter  Google Scholar 

  • Wilson E (1992) The diversity of life. Norton and Company, New York

    Google Scholar 

  • Wintle BA, Walshe T, Parris K, McCarthy MA (2012) Designing occupancy surveys and interpreting non-detection when observations are imperfect. Divers Distrib 18:417–424

    Article  Google Scholar 

  • Zipkin E, DeWan A, Royle A (2009) Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling. J Appl Ecol 46:815–822

    Article  Google Scholar 

  • Zipkin E, Royle A, Dawson D, Bates S (2010) Multi-species occurrence models to evaluate the effects of conservation and management actions. Biol Conserv 143:479–484

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Helena Casellas, Josep Solà and Araceli Torró for their assistance during field work, landscape characterization, insect sorting and heteropteran bug identification. We also thank Gurutzeta Guillera-Arroita and Jose Lahoz-Monfort for their help with the statistical model. Field work was partially supported by the ‘Emerging Research Groups Funding Program’ (Faculty of Biology, University of Barcelona). LM wishes to acknowledge the support of funding from the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR), the Australian Government’s national Environmental Research Program (NERP) and the Australian Research Council Centre of Excellence for Environmental Decisions (CEED). AKH would like to acknowledge financial support from the Baker Foundation. The manuscript greatly benefited from the comments from three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Mata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 192 kb)

Supplementary material 2 (ZIP 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mata, L., Goula, M. & Hahs, A.K. Conserving insect assemblages in urban landscapes: accounting for species-specific responses and imperfect detection. J Insect Conserv 18, 885–894 (2014). https://doi.org/10.1007/s10841-014-9696-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-014-9696-7

Keywords

Navigation