Skip to main content
Log in

Formation of an α-cyclodextrin/16-mercaptohexadecanoic acid complex and its deposition on gold surfaces

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Using 1H NMR, XRD and XPS techniques we show new findings concerning the nature of the complex formed between 16-mercaptohexadecanoic acid (MHA) and α-cyclodextrin. Stabilization was achieved by dipole-induced dipole interactions between the carboxyl groups of the MHA with the hydroxyls on the cavity rim of the α-cyclodextrin. Deposition of the complex onto a gold substrate with subsequent ethanol washing showed retention of the thiol moiety and removal of cyclodextrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yu, X., Wang, Z., Jiang, Y., Shi, F., Zhang, X.: Reversible pH-responsive surface: from superhydrophobicity to superhydrophilicity. Adv. Mater 17, 1289–1293 (2005)

    Article  CAS  Google Scholar 

  2. Lahann, J., Mitragotri, S., Tran, T.–.N., Kaido, H., Sundaram, J., Choi, I.S., Hoffer, S., Somorjai, G.A., Langer, R.: A reversibly switching surface (Reports). Science 299, 371–374 (2003)

    Article  CAS  Google Scholar 

  3. Creager, S.E., Clarke, J.: Contact-angle titrations of mixed omega-mercaptoalkanoic acid/alkanethiol monolayers on gold. Reactive vs nonreactive spreading, and chain length effects on surface pKa values. Langmuir 10, 3675–3683 (1994)

    Article  CAS  Google Scholar 

  4. Lahann, J., Langer, R.: Smart materials with dynamically controllable surfaces. MRS Bull 30, 185–188 (2004)

    Google Scholar 

  5. Liu, Y., Mu, L., Liu, B., Zhang, S., Yang, P., Kong, J.: Controlled protein assembly on a switchable surface. Chem. Comm. 1194–1195 (2004)

  6. Manor, P.C., Saenger, W.: Topography of cyclodextrin inclusion complexes III. Crystal and molecular structure of cyclohexaamylose hexahydrate, the water dimer inclusion complex. J. Am. Chem. Soc 96, 3630–3639 (1974)

    Article  CAS  Google Scholar 

  7. Griffiths, D.W., Bender, M.L.: Cycloarnyloses as catalysts. Adv. Catal 23, 209–261 (1973)

    Article  CAS  Google Scholar 

  8. Bergeron, R.J., Channing, M.A., Gibeily, G.J., Pillor, D.M.: Disposition requirements for binding in aqueous solution of polar substrates in the cyclohexaamylose cavity. J. Am. Chem. Soc 99, 5146–5151 (1977)

    Article  CAS  Google Scholar 

  9. Bratu, I., Gavira-Vallejo, J.M., Hernanz, A.: 1H-NMR study of the inclusion processes for α- and γ-cyclodextrin with fenbufen. Biopolymers 77, 361–367 (2005)

    Article  CAS  Google Scholar 

  10. Schneider, H.–.J., Hacket, F., Rüdiger, V.: NMR studies of cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998)

    Article  CAS  Google Scholar 

  11. Botsi, A., Yannakopoulou, K., Perly, B., Hadjoudis, E.: Positive or adverse effects of methylation on the inclusion behavior of cyclodextrins. A comparative NMR study using pheromone constituents of the olive fruit fly. J. Org. Chem 60, 4017–4023 (1995)

    Article  CAS  Google Scholar 

  12. Hunt, A.A., Rusa, C.C., Tonelli, A.E., Balik, C.M.: Structure and stability of columnar cyclomaltohexaose (α-cyclodextrin) hydrate. Carbohyd. Res 339, 2805–2810 (2004)

    Article  CAS  Google Scholar 

  13. Saenger, W.: Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. Engl 19, 344–362 (1980)

    Article  Google Scholar 

  14. Rusa, C.C., Bullions, T.A., Fox, J., Porbeni, F.E., Wang, X., Tonelli, A.E.: Inclusion compound formation with a new columnar cyclodextrin host. Langmuir 18, 10016–10023 (2002)

    Article  CAS  Google Scholar 

  15. Yan, J., Dong, S.: Self-assembly of the pre-formed inclusion complexes between cyclodextrins and alkanethiols on gold electrodes. J. Electroanal. Chem 440, 229–238 (1997)

    CAS  Google Scholar 

  16. Saenger, W., Noltemeyer, M., Manor, P.C., Hingerty, B., Klar, B.: “Induced-fit”-type complex formation of the model enzyme α-cyclodextrin. Bioorg. Chem 5, 187–195 (1976)

    Article  CAS  Google Scholar 

  17. Gillet, B., Nicole, D.J., Delpuech, J.J.: The hydroxyl group protonation rates of α, β and γ-cyclodextrins in dimethyl sulphoxide. Tetrahedron Lett 23, 65–68 (1982)

    Article  CAS  Google Scholar 

  18. Harata, K.: Comprehensive supramolecular chemistry. In: Atwood, J.L., Davies, J.E., MacNicol, D.D., Vogtle, F., Lehn, J.M. (eds.) Crystallographic Studies, vol. 3, pp. 279–304. Pergamon, Oxford (1996)

    Google Scholar 

  19. Laibinis, P.E., Bain, C.D., Whitesides, G.M.: Attenuation of photoelectrons in monolayers of n-alkanethiols adsorbed on copper, silver, and gold. J. Phys. Chem 95, 7017–7021 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the New Zealand Foundation of Research, Science and Technology (Contract No’s: C08X0410 and IRL0402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda V. Ellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, A.V., Chong, S. & Jansen, M. Formation of an α-cyclodextrin/16-mercaptohexadecanoic acid complex and its deposition on gold surfaces. J Incl Phenom Macrocycl Chem 63, 267–272 (2009). https://doi.org/10.1007/s10847-008-9516-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-008-9516-3

Keywords

Navigation