Skip to main content

Advertisement

Log in

Polycaprolactone and poly-β-cyclodextrin polymer blend: a Biopolymers composite film for drug release

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Nowadays, biomedical films containing drug carriers are preferred over conventional ones, since the protection of the injury and the therapy is joined within a single device. In the current work, we prepared polycaprolactone (PCL) composite films with β-cyclodextrin (βCD) or its epichlorohydrin crosslinked polymer (βCDP) as ibuprofen (Ibu) drug carrier. The composite films were prepared at different PCL/additive ratios (2, 5, 10 and 20 wt%). ATR-FTIR spectroscopy and water contact angle (WCA) measurements indicated a scarce presence of the additives on the surface. Cross-section scanning electron micrographs showed the presence of aggregates corresponding to βCD and βCDP in the inner regions of the films. The incorporation of βCD and βCDP into the PCL films did not affect their thermal properties as was determined from differential scanning calorimetry (DSC). PCL-films with 10 wt% of the inclusion complexes Ibu@βCD and Ibu@βCDP were prepared and the release studies were performed. At pH = 7.2, PCL-Ibu@βCDP composite film released 55% of Ibu within the first six hours; eight times the amount released by PCL-Ibu@βCD within the same time interval. A plausible mechanism for ibuprofen release is discussed based on the cross-section SEM micrographs of composite films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ciccone, W.J., Motz, C., Bentley, C., Tasto, J.P.: Bioabsorbable implants in orthopaedics: New developments and clinical applications. J. Am. Acad. Orthop. Surg. 9, 280–288 (2001). https://doi.org/10.5435/00124635-200109000-00001

    Article  PubMed  Google Scholar 

  2. Sahoo, S., Sasmal, A., Nanda, R., Phani, A.R., Nayak, P.L.: Synthesis of chitosan–polycaprolactone blend for control delivery of ofloxacin drug. Carbohydr. Polym. 79, 106–113 (2010). https://doi.org/10.1016/j.carbpol.2009.07.042

    Article  CAS  Google Scholar 

  3. Semnani, D., Nasari, M., Fakhrali, A.: PCL nanofibers loaded with beta-carotene: a novel treatment for eczema. Polym. Bull. 75, 2015–2026 (2018). https://doi.org/10.1007/s00289-017-2141-9

    Article  CAS  Google Scholar 

  4. Massoumi, B., Taghavi, N., Ghamkhari, A.: Synthesis of a new biodegradable system based on β-cyclodextrin/iron oxide nanocomposite: application for delivery of docetaxel. Polym. Bull. (2020). https://doi.org/10.1007/s00289-020-03254-9

    Article  Google Scholar 

  5. Ulery, B.D., Nair, L.S., Laurencin, C.T.: Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B Polym. Phys. 49, 832–864 (2011). https://doi.org/10.1002/polb.22259

    Article  CAS  Google Scholar 

  6. Middleton, J.C., Tipton, A.J.: Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 21, 2335–2346 (2000). https://doi.org/10.1016/S0142-9612(00)00101-0

    Article  CAS  PubMed  Google Scholar 

  7. Mondal, D., Griffith, M., Venkatraman, S.S.: Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. Int. J. Polym. Mater. Polym. Biomater. 65, 255–265 (2016). https://doi.org/10.1080/00914037.2015.1103241

    Article  CAS  Google Scholar 

  8. Malikmammadov, E., Tanir, T.E., Kiziltay, A., Hasirci, V., Hasirci, N.: PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 29, 863–893 (2018). https://doi.org/10.1080/09205063.2017.1394711

    Article  CAS  PubMed  Google Scholar 

  9. Mallakpour, S., Behranvand, V.: Polymeric nanoparticles: Recent development in synthesis and application. Express Polym. Lett. 10, 895–913 (2016). https://doi.org/10.3144/expresspolymlett.2016.84

    Article  CAS  Google Scholar 

  10. Gidwani, B., Vyas, A.: Synthesis, characterization and application of Epichlorohydrin-β-cyclodextrin polymer. Colloids Surf., B. 114, 130–137 (2014). https://doi.org/10.1016/j.colsurfb.2013.09.035

    Article  CAS  Google Scholar 

  11. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998). https://doi.org/10.1021/CR970022C

    Article  CAS  PubMed  Google Scholar 

  12. Martin-Trasanco, R., Cao, R., Esparza-Ponce, H.E., Montero-Cabrera, M.E., Arratia-Pérez, R.: Reduction of Au(III) by a β-cyclodextrin polymer in acid medium. A stated unattainable reaction. Carbohydr. Polym. 175, 530–537 (2017). https://doi.org/10.1016/j.carbpol.2017.08.013

    Article  CAS  PubMed  Google Scholar 

  13. Martin-Trasanco, R., Anziani‐Ostuni, G., Esparza‐Ponce, H.E., Ortiz, P., Montero‐Cabrera, M.E., Oyarzún, D.P., Zúñiga, C., Pérez‐Donoso, J.M., Pizarro, G., del C., Arratia‐Pérez: R.: From concentrated dispersion to solid β‐cyclodextrin polymer‐capped silver nanoparticle formulation: A trojan horse against Escherichia coli. ChemistrySelect. 4, 10092–10096 (2019). https://doi.org/10.1002/slct.201901406

    Article  CAS  Google Scholar 

  14. Martin, R., Sánchez, I., Cao, R., Rieumont, J.: Solubility and kinetic release studies of naproxen and ibuprofen in soluble epichlorohydrin-β-cyclodextrin polymer. Supramol. Chem. 18, 627–631 (2006). https://doi.org/10.1080/10610270601088073

    Article  CAS  Google Scholar 

  15. Monteiro, A.P.F., Rocha, C.M.S.L., Oliveira, M.F., Gontijo, S.M.L., Agudelo, R.R., Sinisterra, R.D., Cortés, M.E.: Nanofibers containing tetracycline/β-cyclodextrin: Physico-chemical characterization and antimicrobial evaluation. Carbohydr. Polym. 156, 417–426 (2017). https://doi.org/10.1016/j.carbpol.2016.09.059

    Article  CAS  PubMed  Google Scholar 

  16. Canbolat, M.F., Celebioglu, A., Uyar, T.: Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids Surf., B. 115, 15–21 (2014). https://doi.org/10.1016/j.colsurfb.2013.11.021

    Article  CAS  Google Scholar 

  17. Zhu, M., Wei, K., Lin, S., Chen, X., Wu, C.-C., Li, G., Bian, L.:Bioadhesive polymersome for localized and sustained drug delivery at pathological sites with harsh enzymatic and fluidic environment via supramolecular host-guest complexation. Small. 14, 1702288 (2018). https://doi.org/10.1002/smll.201702288

    Article  CAS  Google Scholar 

  18. Varan, C., Bilensoy, E.: Development of implantable hydroxypropyl-β-cyclodextrin coated polycaprolactone nanoparticles for the controlled delivery of docetaxel to solid tumors. J. Incl. Phenom. Macrocycl. Chem. 80, 9–15 (2014). https://doi.org/10.1007/s10847-014-0422-6

    Article  CAS  Google Scholar 

  19. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956). https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  20. Egyed, O.: Spectroscopic studies on β-cyclodextrin. Vib. Spectrosc. 1, 225–227 (1990). https://doi.org/10.1016/0924-2031(90)80041-2

    Article  CAS  Google Scholar 

  21. Gautam, S., Dinda, A.K., Mishra, N.C.: Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater. Sci. Eng. C. (2013). https://doi.org/10.1016/j.msec.2012.12.015

    Article  Google Scholar 

  22. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997). https://doi.org/10.1021/CR960371R

    Article  CAS  PubMed  Google Scholar 

  23. Coleman, A.W., Nicolis, I., Keller, N., Dalbiez, J.P.: Aggregation of cyclodextrins: An explanation of the abnormal solubility of?-cyclodextrin. J. Incl. Phenom. Mol. Recognit. Chem. 13, 139–143 (1992). https://doi.org/10.1007/BF01053637

    Article  CAS  Google Scholar 

  24. Giordano, F., Novak, C., Moyano, J.R.: Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim. Acta. 380, 123–151 (2001). https://doi.org/10.1016/S0040-6031(01)00665-7

    Article  CAS  Google Scholar 

  25. Hădărugă, N.G., Bandur, G.N., David, I., Hădărugă, D.I.: A review on thermal analyses of cyclodextrins and cyclodextrin complexes. Environ. Chem. Lett. 17, 349–373 (2019). https://doi.org/10.1007/s10311-018-0806-8

    Article  CAS  Google Scholar 

  26. Heydari, A., Hassani, Y., Sheibani, H., Pardakhti, A.: Water-soluble β-cyclodextrin polymers as drug carriers to improve solubility, thermal stability and controlled release of nifedipine. Pharm. Chem. J. 51, 375–383 (2017). https://doi.org/10.1007/s11094-017-1617-0

    Article  CAS  Google Scholar 

  27. Lizundia, E., Gómez-Galván, F., Pérez-Álvarez, L., León, L.M., Vilas, J.L.: Poly(L-lactide)/branched β-cyclodextrin blends: Thermal, morphological and mechanical properties. Carbohydr. Polym. 144, 25–32 (2016). https://doi.org/10.1016/j.carbpol.2016.02.043

    Article  CAS  PubMed  Google Scholar 

  28. Dong, T., Mori, T., Pan, P., Kai, W., Zhu, B., Inoue, Y.: Crystallization behavior and mechanical properties of poly(ε-caprolactone)/cyclodextrin biodegradable composites. J. Appl. Polym. Sci. 112, 2351–2357 (2009). https://doi.org/10.1002/app.29628

    Article  CAS  Google Scholar 

  29. Ouellette, R.J., Rawn, J.D.: Carboxylic Acids and Esters. In: Ouellette, R.J. and Rawn, J.D.B.T.-P. of O.C. (eds.) Principles of Organic Chemistry. pp. 287–314. Elsevier, Boston: (2015)

  30. Averous, L., Moro, L., Dole, P., Fringant, C.: Properties of thermoplastic blends: starch–polycaprolactone. Polymer. 41, 4157–4167 (2000). https://doi.org/10.1016/S0032-3861(99)00636-9

    Article  CAS  Google Scholar 

  31. Magnusdottir, A., Másson, M., Loftsson, T.: Self Association and Cyclodextrin Solubilization of NSAIDs. J. Incl. Phenom. Macrocycl. Chem. 44, 213–218. https://doi.org/10.1023/A:1023079322024

  32. Bettini, R., Colombo, P., Massimo, G., Catellani, P.L., Vitali, T.: Swelling and drug release in hydrogel matrices: polymer viscosity and matrix porosity effects. Eur. J. Pharm. Sci. 2, 213–219 (1994). https://doi.org/10.1016/0928-0987(94)90025-6

    Article  CAS  Google Scholar 

  33. Albihn, P.: The 5-year accelerated ageing project for thermoset and thermoplastic elastomeric materials: A service life prediction tool. In: Coveney, V.A.B.T.-E. and C. (ed.) Elastomers and components, pp. 3–25. Elsevier (2006)

Download references

Acknowledgements

The authors acknowledge the support by internal projects of investigation number L19-01 and L217-15 from the Universidad Tecnológica Metropolitana and the program of Magíster en Química mención Tecnología de los Materiales held by the Universidad Tecnológica Metropolitana. Rudy Martin-Trasanco would like to acknowledge the support of the Fondo Nacional de Desarrollo Científico y Tecnológico Grant 11190555.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guadalupe del C. Pizarro or Rudy Martin-Trasanco.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepúlveda, F.A., Sánchez, J., Oyarzun, D.P. et al. Polycaprolactone and poly-β-cyclodextrin polymer blend: a Biopolymers composite film for drug release. J Incl Phenom Macrocycl Chem 102, 65–76 (2022). https://doi.org/10.1007/s10847-021-01101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01101-6

Keywords

Navigation