Skip to main content
Log in

NMR studies of complex formation between natural cyclodextrins and benzene

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Inclusion complexes of benzene (Bz) with cyclodextrins (CD) have been investigated so far using non-NMR techniques in various solvents resulting in conflicting data. Here, the first application of NMR spectroscopy in combination with rigorous statistical analysis of the results has allowed us to determine accurately the stoichiometry of complexes and their association constants. Titration measurements have been performed by 1H NMR spectroscopy in D2O at a magnetic field B0 of 14.1 T. αCD and γCD host molecules form weak 1 : 1 complexes with Bz. In contrast, Bz and βCD build 1 : 1 and 2 : 1 complexes coexisting in solution with large binding constants. Binding of second benzene molecule is strongly cooperative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Faraday, M.: On new compounds of carbon and, and on certain other products obtained during the decomposition of oil by heat. Philos. Trans. R Soc. 115, 440–466 (1825)

    Article  Google Scholar 

  2. Lonsdale, K.: The structure of the Benzene Ring in Hexamethylbenzene. Proc. R Soc. 123A, 494–515 (1929)

    Google Scholar 

  3. Crini, G.: Review: A history of Cyclodextrins. Chem. Rev. 114, 10940–10975 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. Del Valle, E.M.M.: Cyclodextrins and their uses: A review. Process. Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  5. Biwer, A., Antranikian, G., Heinzle, E.: Enzymatic production of cyclodextrins. Appl. Microbiol. Biotechnol. 59, 609–617 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. Rekharsky, M.V., Inoue, Y.: Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 98, 1875–1917 (1998)

    Article  CAS  PubMed  Google Scholar 

  8. Pharr, D.Y., Fu, Z.S., Smith, T.K., Hinze, W.L.: Solubilization of Cyclodextrins for Analytical Applications. Anal. Chem. 61, 275–279 (1989)

    Article  CAS  Google Scholar 

  9. Sabadini, E., Cosgrovea, T., do, Carmo Egídio, F.: Solubility of cyclomaltooligosaccharides (cyclodextrins) in H2O and D2O: a comparative study. Carbohydr. Res. 341, 270–274 (2006)

  10. Loftsson, T., Duchene, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. di Cagno, M.P.: The potential of cyclodextrins as novel active Pharmaceutical ingredients: A short overview. Molecules. 22, 1–14 (2017)

    Article  Google Scholar 

  12. Sikder, M.T., Rahman, M.M., Jakariya, M., Hosokawa, T., Kurasaki, M., Saito, T.: Remediation of water pollution with native cyclodextrins and modified cyclodextrins: A comparative overview and perspectives. Chem. Eng. J. 355, 920–941 (2019)

    Article  CAS  Google Scholar 

  13. Tian, B., Hua, S., Tian, Y., Liu, J.: Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: A review. Environ. Sci. Pollut Res. 28, 1317–1340 (2021)

    Article  CAS  Google Scholar 

  14. Blach, P., Fourmentin, S., Landy, D., Cazier, F., Surpateanu, G.: Cyclodextrins: A new efficient absorbent to treat waste gas streams. Chemosphere. 70, 374–380 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. Park, K.H., Choi, J.M., Cho, E., Jung, S.: Enhanced solubilization of Fluoranthene by Hydroxypropyl β-Cyclodextrin Oligomer for Bioremediation. Polymers. 10, 111 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Terada, Y., Yanase, M., Takata, H., Takaha, T., Okada, S.: Cyclodextrins are not the major cyclic α-1,4-glucans produced by the initial action of cyclodextrin glucanotransferase on amylose. J. Biol. Chem. 272, 15729–15733 (1997)

    Article  CAS  PubMed  Google Scholar 

  17. Ueda, H., Endo, T.: Large-ring cyclodextrins. In: Dodziuk, H. (ed.) Cyclodextrins and Their Complexes, pp. 370–380. Wiley-VCH, Weinheim (2006)

    Chapter  Google Scholar 

  18. Bernatowicz, P., Ruszczynska-Bartnik, K., Ejchart, A., Dodziuk, H., Kaczorowska, E., Ueda, H.: Carbon-13 NMR relaxation study of the internal dynamics in cyclodextrins in isotropic solution. J. Phys. Chem. B. 114, 59–65 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. Lichtenthaler, F.W., Immel, S.: On the hydrophobic characteristics of cyclodextrins: Computer-aided visualization of molecular lipophilicity patterns. Liebig’s Ann. 27–37 (1996)

  20. Ueda, H., Wakisawa, M., Nagase, H., Takaha, T., Okada, S.: Physicochemical properties of large-ring cyclodextrins (CD18∼CD21). J. Incl. Phenom. Macrocycl. Chem. 44, 403–405 (2002)

    Article  CAS  Google Scholar 

  21. Snyder, R.: Recent developments in the understanding of Benzene Toxicity and Leukemogenesis. Drug Chem. Toxicol. 23, 13–25 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. https://www.statista.com/statistics/1245172/benzene-market-volume-worldwide/ (accessed November 7, 2023)

  23. Daubert, T.E., Danner, R.P., Washington: D.C. Taylor and Francis, 361 (1989)

  24. May, W.E., et al.: J. Chem. Ref. Data. 28, 197–0200 (1983)

    Article  CAS  Google Scholar 

  25. Kınaytürk, N.K., Kalaycı, T., Tunalı, B., Altuğ, D.T.: A spectroscopic approach to compare the quantum chemical calculations and experimental characteristics of some organic molecules; Benzene, Toluene, P-Xylene, P-Toluidine. Chem. Phys. 570, 111905 (2023)

    Article  Google Scholar 

  26. Li, S., Purdy, W.C.: Cyclodextrins and their applications in analytical chemistry. Chem. Rev. 92, 1457–1470 (1992)

    Article  CAS  Google Scholar 

  27. Saenger, W., Jacob, J., Gessler, K., Steiner, T., Hoffmann, D., Sanbe, H., Koizumi, K., Smith, S.M., Takaha, T.: Structures of the common cyclodextrins and their larger Analoguess beyond the Doughnut. Chem. Rev. 98, 1787–1802 (1998)

    Article  CAS  PubMed  Google Scholar 

  28. Schneider, H.J., Yatsimirsky, A.K.: Principles and methods in supramolecular chemistry. Wiley (2000)

  29. Dodziuk, H. (ed.): Cyclodextrins and Their Complexes, Ch. 10. Wiley-VCH, Weinheim (2006)

    Google Scholar 

  30. Thordarson, P.: Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. Fielding, L.: Determination of Association Constants (Ka) from solution NMR data. Tetrahedron. 56, 6151–6170 (2000)

    Article  CAS  Google Scholar 

  32. Guo, Q.X., Luo, S.H., Liu, Y.C.: Substituent effects on the driving force for inclusion complexation of α- and β-Cyclodextrin with Monosubstituted benzene derivatives. J. Inclusion Phenom. Mol. Recognit. Chem. 30, 173–182 (1998)

    Article  CAS  Google Scholar 

  33. Tucker, E.E., Christian, S.D.: Vapor pressure studies of benzene-cyclodextrin inclusion complexes in aqueous solution. J. Am. Chem. Soc. 106, 1942–1945 (1984)

    Article  CAS  Google Scholar 

  34. Sanemasa, I., Akamine, Y.: Association of benzene and alkylbenzenes with cyclodextrins in aqueous medium. Bull. Chem. Soc. Jpn. 60, 2059–2066 (1987)

    Article  CAS  Google Scholar 

  35. Saito, Y., Yoshihara, K., Tanemura, I., Ueda, H., Sato, T.: Determination of the stability constants of benzene and alkylbenzenes with α-cyclodextrin by static head-space gas chromatography. Chem. Pharm. Bull. 45, 1711–1713 (1997)

    Article  CAS  Google Scholar 

  36. Hoshino, M., Imamura, M., Ikehara, K., Hama, Y.: Fluorescence enhancement of benzene derivatives by forming inclusion complexes with β-Cyclodextrin in Aqueous solutions. J. Phys. Chem. 65, 1820–1823 (1981)

    Article  Google Scholar 

  37. Trofymchuk, I.M., Belyakova, L.A., Grebenyuk, A.G.: Study of complex formation between β-cyclodextrin and benzene. J. Incl. Phenom. Macrocycl. Chem. 69, 371–375 (2011)

    Article  CAS  Google Scholar 

  38. Gómez-Orellana, I., Hallén, D.: The thermodynamics of the binding of benzene to β-cyclodextrin in aqueous solution. Thermochim. Acta. 221, 183–193 (1993)

    Article  Google Scholar 

  39. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)

    Article  CAS  PubMed  Google Scholar 

  40. Dang, Z., Song, L.X., Guo, X.Q., Du, F.Y., Yang, J., Yang, J.: Applications of powder X-Ray diffraction to inclusion complexes of Cyclodextrins. Curr. Org. Chem. 15, 848–861 (2011)

    Article  CAS  Google Scholar 

  41. Wells, R.J., Cheung, J., Hook, M.J.: Dimethylsulfone as a universal standard for analysis of organics by QNMR. Accrd Qual. Assur. 9, 450–456 (2004). https://doi.org/10.1007/s00769-004-0779-0

    Article  CAS  Google Scholar 

  42. qNMR Internal Standard Reference Data (ISRD): Dimethyl sulfone (DMSO2) [ISRD-02]. Rapport BIMP – 2018/04

  43. Rainford, D.S., Fisk, C.L., Becker, E.D.: Calibration of methanol and Ethylene Glycol Nuclear magnetic resonance thermometers. Anal. Chem. 51, 2050–2051 (1979)

    Article  Google Scholar 

  44. Dodziuk, H., Kozminski, W., Ejchart, A.: NMR studies of Chiral Recognition by Cyclodextrins. Chirality. 16, 90–105 (2004)

    Article  CAS  PubMed  Google Scholar 

  45. Nowakowski, M., Ejchart, A.: Complex formation of fenchone with α-cyclodextrin: NMR titrations. J. Inclusion Phenom. Macrocycl. Chem. 79, 337–342 (2014)

    Article  CAS  Google Scholar 

  46. Jopa, S., Ejchart, A., Wójcik, J., Nowakowski, M.: NMR studies of inclusion complexes: Naphthalene and natural cyclodextrins. Phys. Chem. Chem. Phys. 24, 13690–13697 (2022). https://doi.org/10.1039/D2CP01152B

    Article  CAS  PubMed  Google Scholar 

  47. Johnson, M.L., Faunt, L.M.: Parameter estimation by least-squares methods. Methods Enzymol. 210, 1–37 (1992)

    Article  CAS  PubMed  Google Scholar 

  48. Al-Soufi, W., Cabrer, P.R., Jover, A., Budal, R.M., Tato, J.V.: Determination of second-order association constants by global analysis of 1H and 13C NMR chemical shifts. Application to the complexation of sodium fusidate and potassium helvolate by β- and γ-cyclodextrin. Steroids. 68, 43–53 (2003)

    Article  CAS  PubMed  Google Scholar 

  49. Freire, E., Schön, A., Velazquez-Campoy, A.: Isothermal titration calorimetry: General formalism using binding polynomials. Methods Enzymol. 455, 127–155 (2009)

    Article  CAS  PubMed  Google Scholar 

  50. Dodziuk, H., Ejchart, A., Lukin, O., Vysotsky, M.O.: 1H and 13C NMR and molecular dynamics study of chiral recognition of camphor enantiomers by α-cyclodextrin. J. Org. Chem. 64, 1503–1507 (1999)

    Article  CAS  PubMed  Google Scholar 

  51. Dodziuk, H., Kozminski, W., Dolgonos, G.: The differences between the ∆H and ∆S values of the 1:2 complex of camphor enantiomers with α-cyclodextrin determined by NMR titration and the results obtained by other techniques. Pol. J. Chem. 77, 251–255 (2003)

    CAS  Google Scholar 

  52. Bernatowicz, P., Nowakowski, M., Dodziuk, H., Ejchart, A.: Determination of association constants at moderately fast chemical exchange: Complexation of camphor enantiomers by αcyclodextrin. J. Magn. Reson. 181, 304–309 (2006)

    Article  CAS  PubMed  Google Scholar 

  53. Dodziuk, H., Nowinski, K.S., Kozminski, W., Dolgonos, G.: On the impossibility of determination of stepwise binding constants for the 1: 2 complex of (+)–camphor with α–cyclodextrin. Org. Biomol. Chem. 1, 581–584 (2003)

    Article  CAS  PubMed  Google Scholar 

  54. Majumder, M., Sathyamurthy, N.: A theoretical investigation on the effect of π–π stacking interaction on. Chem. Acc. 131, 1092 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AE and MN: conceptualization; GS, MN and JW: samples preparation; GS and MN: measurements; GS and AE: data analysis; GS, JW, AE and MN: manuscript preparations.

Corresponding author

Correspondence to Michał Nowakowski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szczupaj, G., Wójcik, J., Ejchart, A. et al. NMR studies of complex formation between natural cyclodextrins and benzene. J Incl Phenom Macrocycl Chem 104, 129–136 (2024). https://doi.org/10.1007/s10847-024-01222-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-024-01222-8

Keywords

Navigation