Skip to main content
Log in

Cortical-Inspired Wilson–Cowan-Type Equations for Orientation-Dependent Contrast Perception Modelling

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We consider the evolution model proposed in Bertalmío (Front Comput Neurosci 8:71, 2014), Bertalmío et al. (IEEE Trans Image Process 16(4):1058–1072, 2007) to describe illusory contrast perception phenomena induced by surrounding orientations. Firstly, we highlight its analogies and differences with the widely used Wilson–Cowan equations (Wilson and Cowan in BioPhys J 12(1):1–24, 1972), mainly in terms of efficient representation properties. Then, in order to explicitly encode local directional information, we exploit the model of the primary visual cortex (V1) proposed in Citti and Sarti (J Math Imaging Vis 24(3):307–326, 2006) and largely used over the last years for several image processing problems (Duits and Franken in Q Appl Math 68(2):255–292, 2010; Prandi and Gauthier in A semidiscrete version of the Petitot model as a plausible model for anthropomorphic image reconstruction and pattern recognition. SpringerBriefs in Mathematics, Springer, Cham, 2017; Franceschiello et al. in J Math Imaging Vis 60(1):94–108, 2018). The resulting model is thus defined in the space of positions and orientation, and it is capable of describing assimilation and contrast visual bias at the same time. We report several numerical tests showing the ability of the model to reproduce, in particular, orientation-dependent phenomena such as grating induction and a modified version of the Poggendorff illusion. For this latter example, we empirically show the existence of a set of threshold parameters differentiating from inpainting to perception-type reconstructions and describing long-range connectivity between different hypercolumns in V1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. For our comparisons, we used the ODOG and BIWaM codes freely available at https://github.com/TUBvision/betz2015_noise.

References

  1. Atick, J.J.: Could information theory provide an ecological theory of sensory processing? Netw. Comput. Neural Syst. 3(2), 213–251 (1992)

    Article  MATH  Google Scholar 

  2. Attneave, F.: Some informational aspects of visual perception. Psychol. Rev. 61(3), 183 (1954)

    Article  Google Scholar 

  3. Barbieri, D., Citti, G., Cocci, G., Sarti, A.: A cortical-inspired geometry for contour perception and motion integration. J. Math. Imaging Vis. 49(3), 511–529 (2014). https://doi.org/10.1007/s10851-013-0482-z

    Article  MATH  Google Scholar 

  4. Barlow, H.B., et al.: Possible principles underlying the transformation of sensory messages. Sens. Commun. 1, 217–234 (1961)

    Google Scholar 

  5. Bekkers, E., Duits, R., Berendschot, T., ter Haar Romeny, B.: A multi-orientation analysis approach to retinal vessel tracking. J. Math. Imaging Vis. 49(3), 583–610 (2014)

    Article  MATH  Google Scholar 

  6. Bertalmío, M.: From image processing to computational neuroscience: a neural model based on histogram equalization. Front. Comput. Neurosci. 8, 71 (2014)

    Google Scholar 

  7. Bertalmío, M.: Image Processing for Cinema. Chapman and Hall/CRC, London (2014)

    Book  MATH  Google Scholar 

  8. Bertalmío, M., Calatroni, L., Franceschi, V., Franceschiello, B., Gomez Villa, A., Prandi, D.: Visual illusions via neural dynamics: Wilson–Cowan-type models and the efficient representation principle. J. Neurophysiol. 123(5), 1606–1618 (2020). https://doi.org/10.1152/jn.00488.2019

    Article  Google Scholar 

  9. Bertalmío, M., Calatroni, L., Franceschi, V., Franceschiello, B., Prandi, D.: A cortical-inspired model for orientation-dependent contrast perception: a link with Wilson–Cowan equations. In: Lellmann, J., Burger, M., Modersitzki, J. (eds.) Scale Space and Variational Methods in Computer Vision, pp. 472–484. Springer, Cham (2019)

    Chapter  Google Scholar 

  10. Bertalmío, M., Caselles, V., Provenzi, E., Rizzi, A.: Perceptual color correction through variational techniques. IEEE Trans. Image Process. 16(4), 1058–1072 (2007)

    Article  MathSciNet  Google Scholar 

  11. Bertalmío, M., Cowan, J.D.: Implementing the retinex algorithm with Wilson–Cowan equations. J. Physiol. 103(1), 69–72 (2009)

    Google Scholar 

  12. Blakeslee, B., Cope, D., McCourt, M.E.: The oriented difference of gaussians (ODOG) model of brightness perception: overview and executable Mathematica notebooks. Behav. Res. Methods 48(1), 306–312 (2016)

    Article  Google Scholar 

  13. Blakeslee, B., McCourt, M.E.: A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction. Vis. Res. 39(26), 4361–4377 (1999)

    Article  Google Scholar 

  14. Bohi, A., Prandi, D., Guis, V., Bouchara, F., Gauthier, J.P.: Fourier descriptors based on the structure of the human primary visual cortex with applications to object recognition. J. Math. Imaging Vis. 57(1), 117–133 (2017). https://doi.org/10.1007/s10851-016-0669-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Boscain, U.V., Chertovskih, R., Gauthier, J.P., Prandi, D., Remizov, A.: Highly corrupted image inpainting through hypoelliptic diffusion. J. Math. Imaging Vis. 60(8), 1231–1245 (2018). https://doi.org/10.1007/s10851-018-0810-4

    Article  MathSciNet  MATH  Google Scholar 

  16. Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D.: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17(6), 2112–2127 (1997)

    Article  Google Scholar 

  17. Bressloff, P.C., Cowan, J.D.: An amplitude equation approach to contextual effects in visual cortex. Neural Comput. 14(3), 493–525 (2002)

    Article  MATH  Google Scholar 

  18. Bressloff, P.C., Cowan, J.D., Golubitsky, M., Thomas, P.J., Wiener, M.C.: Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 356, 299–330 (2001)

    Article  Google Scholar 

  19. Brücke, E.: Über Ergänzungs und Contrastfarben. In: Sitzungsberichte der Mathematisch-naturwissenschaftlichen Classe der Kaiserlichen, vol. 51, pp. 461–501. Akademie der Wissenschaften, Vienna (1865)

  20. Carandini, M., Demb, J.B., Mante, V., Tolhurst, D.J., Dan, Y., Olshausen, B.A., Gallant, J.L., Rust, N.C.: Do we know what the early visual system does? J. Neurosci. 25(46), 10577–10597 (2005)

    Article  Google Scholar 

  21. Chan, T., Shen, J.: Image Processing and Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2005). https://doi.org/10.1137/1.9780898717877

    Book  MATH  Google Scholar 

  22. Chevreul, M.E.: De la loi du contraste simultané des couleurs et de l’assortiment des object colorés [The law of simultaneous contrast of colors and the assortment of colored objects]. Pitois-Levreault, Paris, France (1839)

  23. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24(3), 307–326 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cowan, J.D., Neuman, J., van Drongelen, W.: Wilson–Cowan equations for neocortical dynamics. J. Math. Neurosci. 6(1), 1 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A Opt. Image Sci. 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  26. Duits, R., Felsberg, M., Granlund, G., Haar-Romenij-ter, B.: Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group. Int. J. Comput. Vis. 72(1), 79–102 (2007). https://doi.org/10.1007/s11263-006-8894-5

    Article  Google Scholar 

  27. Duits, R., Franken, E.: Left-invariant parabolic evolutions on \(SE(2)\) and contour enhancement via invertible orientation scores. Part I: linear left-invariant diffusion equations on \(SE(2)\). Q. Appl. Math. 68(2), 255–292 (2010)

  28. Faugeras, O., Touboul, J., Cessac, B.: A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs. Front. Comput. Neurosci. 3, 1 (2009). https://doi.org/10.3389/neuro.10.001.2009

    Article  Google Scholar 

  29. Franceschiello, B., Mashtakov, A., Citti, G., Sarti, A.: Modelling of the poggendorff illusion via sub-riemannian geodesics in the roto-translation group. In: International Conference on Image Analysis and Processing, pp. 37–47. Springer, Berlin (2017)

  30. Franceschiello, B., Mashtakov, A., Citti, G., Sarti, A.: Geometrical optical illusion via sub-riemannian geodesics in the roto-translation group. Differ. Geom. Appl. 65, 55–77 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Franceschiello, B., Sarti, A., Citti, G.: A neuromathematical model for geometrical optical illusions. J. Math. Imaging Vis. 60(1), 94–108 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. French, D.: Identification of a free energy functional in an integro-differential equation model for neuronal network activity. Appl. Math. Lett. 17(9), 1047–1051 (2004). https://doi.org/10.1016/j.aml.2004.07.007

    Article  MathSciNet  MATH  Google Scholar 

  33. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982). https://doi.org/10.1073/pnas.79.8.2554

    Article  MathSciNet  MATH  Google Scholar 

  34. Howe, C.Q., Yang, Z., Purves, D.: The poggendorff illusion explained by natural scene geometry. Proc. Natl. Acad. Sci. 102(21), 7707–7712 (2005)

    Article  Google Scholar 

  35. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)

    Article  Google Scholar 

  36. Kim, J., Batard, T., Bertalmío, M.: Retinal processing optimizes contrast coding. J. Vis. 16(12), 1151–1151 (2016)

    Article  Google Scholar 

  37. Kitaoka, A.: Adelson’s checker-shadow illusion-like gradation lightness illusion. http://www.psy.ritsumei.ac.jp/~akitaoka/gilchrist2006mytalke.html (2006). Accessed: 03 Nov 2018

  38. Martinez-Garcia, M., Cyriac, P., Batard, T., Bertalmío, M., Malo, J.: Derivatives and inverse of cascaded linear+nonlinear neural models. PLOS ONE 13(10), 1–49 (2018)

    Article  Google Scholar 

  39. McCourt, M.E.: A spatial frequency dependent grating-induction effect. Vis. Res. 22(1), 119–134 (1982)

    Article  Google Scholar 

  40. Olshausen, B.A., Field, D.J.: Vision and the coding of natural images: the human brain may hold the secrets to the best image-compression algorithms. Am. Sci. 88(3), 238–245 (2000)

    Article  Google Scholar 

  41. Otazu, X., Vanrell, M., Parraga, C.A.: Multiresolution wavelet framework models brightness induction effects. Vis. Res. 48(5), 733–751 (2008)

    Article  Google Scholar 

  42. Petitot, J.: Elements of Neurogeometry: Functional Architectures of Vision. Lecture Notes in Morphogenesis. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  43. Prandi, D., Gauthier, J.P.: A Semidiscrete Version of the Petitot Model as a Plausible Model for Anthropomorphic Image Reconstruction and Pattern Recognition. Springer Briefs in Mathematics. Springer International Publishing, Cham (2017)

    MATH  Google Scholar 

  44. Rucci, M., Victor, J.D.: The unsteady eye: an information-processing stage, not a bug. Trends Neurosci. 38(4), 195–206 (2015)

    Article  Google Scholar 

  45. Sarti, A., Citti, G.: The constitution of visual perceptual units in the functional architecture of V1. J. Comput. Neurosci. 38(2), 285–300 (2015). https://doi.org/10.1007/s10827-014-0540-6

    Article  MathSciNet  MATH  Google Scholar 

  46. Self, M.W., Lorteije, J.A., Vangeneugden, J., van Beest, E.H., Grigore, M.E., Levelt, C.N., Heimel, J.A., Roelfsema, P.R.: Orientation-tuned surround suppression in mouse visual cortex. J. Neurosci. 34(28), 9290–9304 (2014)

    Article  Google Scholar 

  47. Shapley, R., Gordon, J.: Nonlinearity in the perception of form. Percept. Psychophys. 37(1), 84–88 (1985). https://doi.org/10.3758/BF03207143

    Article  Google Scholar 

  48. Sugita, Y., Hidaka, S., Teramoto, W.: Visual percepts modify iconic memory in humans. Sci. Rep. 8, 1–7 (2018)

    Article  Google Scholar 

  49. Ts’o, D.Y., Gilbert, C.D., Wiesel, T.N.: Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6(4), 1160–1170 (1986)

    Article  Google Scholar 

  50. Veltz, R., Faugeras, O.: Local/global analysis of the stationary solutions of some neural field equations. SIAM J. Appl. Dyn. Syst. 9(3), 954–998 (2009). https://doi.org/10.1137/090773611

    Article  MathSciNet  MATH  Google Scholar 

  51. Webster, M.A.: Visual adaptation. Annu. Rev. Vis. Sci. 1(1), 547–567 (2015). https://doi.org/10.1146/annurev-vision-082114-035509

    Article  Google Scholar 

  52. Weintraub, D.J., Krantz, D.H.: The Poggendorff illusion: amputations, rotations, and other perturbations. Atten. Percept. Psychophys. 10(4), 257–264 (1971)

    Article  Google Scholar 

  53. Westheimer, G.: Illusions in the spatial sense of the eye: geometrical-optical illusions and the neural representation of space. Vis. Res. 48(20), 212–2142 (2008)

    Article  Google Scholar 

  54. White, M.: A new effect of pattern on perceived lightness. Perception 8(4), 413–416 (1979)

    Article  Google Scholar 

  55. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. BioPhys. J. 12(1), 1–24 (1972)

    Article  Google Scholar 

  56. Yeonan-Kim, J., Bertalmío, M.: Retinal lateral inhibition provides the biological basis of long-range spatial induction. PLOS ONE 11(12), 1–23 (2016)

    Article  Google Scholar 

  57. Zhang, J., Duits, R., Sanguinetti, G., ter Haar Romeny, B.M.: Numerical approaches for linear left-invariant diffusions on se (2), their comparison to exact solutions, and their applications in retinal imaging. Numer. Math. Theory Methods Appl. 9(1), 1–50 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the anonymous referees for their suggestions which improved significantly the quality of their manuscript. M. B. acknowledges the support of the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 761544 (Project HDR4EU) and under Grant Agreement No. 780470 (Project SAUCE), and of the Spanish government and FEDER Fund, Grant Ref. PGC2018-099651-B-I00 (MCIU/AEI/FEDER, UE). L. C., V. F. and D. P. acknowledge the support of a public grant overseen by the French National Research Agency (ANR) as part of the Investissement d’avenir program, through the iCODE project funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02 and of the research project LiftME funded by INS2I, CNRS. V. F. acknowledges the support received from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant No. 794592 and from the INdAM project Problemi isoperimetrici in spazi Euclidei e non. V. F. and D. P. also acknowledge the support of ANR-15-CE40-0018 project SRGI - Sub-Riemannian Geometry and Interactions. B. F. acknowledges the support of the Fondation Asile des Aveugles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Calatroni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Orientation-Dependent Model of V1

A Orientation-Dependent Model of V1

Let us denote by \(R>0\) the size of the visual plane, and let \(D_R\subset {{\,\mathrm{\mathbb {R}}\,}}^2\) be the disk \(D_R:=\{x_1^2+x_2^2 \le R^2\}\). Fix \(R>0\) such that \(Q\subset D_R\). In order to exploit the properties of the roto-translation group \(\mathrm{SE}(2)\) on images, we now consider them to be elements of the set:

$$\begin{aligned} \mathcal {I}= \left\{ f \in L^2({{\,\mathrm{\mathbb {R}}\,}}^2,[0,1]) \text { such that\ } {{\,\mathrm{supp}\,}}f\subset D_R\right\} . \end{aligned}$$
(24)

We remark that fixing \(R>0\) is necessary, since contrast perception is strongly dependent on the scale of the features under consideration w.r.t. the visual plane.

Orientation dependence of the visual stimulus is encoded via cortical inspired techniques, following, for example, [14, 23, 27, 42, 43]. The main idea at the base of these works goes back to the 1959 paper [35] by Hubel and Wiesel (Nobel prize in 1981) who discovered the so-called hypercolumn functional architecture of the visual cortex V1.

Each neuron \(\xi \) in V1 is assumed to be associated with a receptive field (RF) \(\psi _\xi \in L^2({{\,\mathrm{\mathbb {R}}\,}}^2)\) such that its response under a visual stimulus \(f\in \mathcal I\) is given by

$$\begin{aligned} F(\xi ) = \langle \psi _\xi , f\rangle _{L^2({{\,\mathrm{\mathbb {R}}\,}}^2)} = \int _{{{\,\mathrm{\mathbb {R}}\,}}^2} \overline{\psi _\xi ({z})} f({z})\, \mathrm{d}{z}. \end{aligned}$$
(25)

Since each neuron is sensible to a preferred position and orientation in the visual plane, we let \(\xi =(x,\theta )\in \mathcal {M} = \mathbb R^2\times \mathbb P^1\). Here, \(\mathbb P^1\) is the projective line that we represent as \([0,\pi ]/\sim \), with \(0\sim \pi \). Moreover, in order to respect the shift-twist symmetry [17, Section  4], we will assume that the RF of different neurons are “deducible” one from the other via a linear transformation. Let us explain this in detail.

The double covering of \(\mathcal {M}\) is given by the Euclidean motion group \(\mathrm{SE}(2)={{\,\mathrm{\mathbb {R}}\,}}^2\rtimes \mathbb {S}^1\) that we consider endowed with its natural semi-direct product structure. That is, for \((x,\theta ),(y,\varphi )\in \mathrm{SE}(2)\), we let

$$\begin{aligned}&(x,\theta )\star (y,\varphi ) = (x+R_\theta y, \theta +\varphi ), \end{aligned}$$
(26)
$$\begin{aligned}&\text {where } R_\theta = \left( \begin{array}{ll} \cos \theta &{}\quad -\sin \theta \\ \sin \theta &{}\quad \cos \theta \end{array}\right) . \end{aligned}$$
(27)

In particular, the above operation induces an action of \(\mathrm{SE}(2)\) on \(\mathcal {M}\), which is thus an homogeneous space. Observe that \(\mathrm{SE}(2)\) is unimodular and that its Haar measure (the left and right-invariant measure up to scalar multiples) is \(\mathrm{d}x\mathrm{d}\theta \).

We now denote by \(\mathcal {U}(L^2({{\,\mathrm{\mathbb {R}}\,}}^2)) \subset \mathcal {L}(L^2({{\,\mathrm{\mathbb {R}}\,}}^2))\) the space of linear unitary operators on \(L^2({{\,\mathrm{\mathbb {R}}\,}}^2)\) and let \({\varPi }{:}\,\mathrm{SE}(2)\rightarrow \mathcal {U}(L^2({{\,\mathrm{\mathbb {R}}\,}}^2))\) be the quasi-regular representation of \(\mathrm{SE}(2)\). That is, \({\varPi }(x,\theta )\in \mathcal {U}(L^2({{\,\mathrm{\mathbb {R}}\,}}^2))\) is the unitary operator encoding the action of the roto-translation \((x,\theta )\in \mathrm{SE}(2)\) on square-integrable functions on \(\mathbb R^2\). The action of \({\varPi }(x,\theta )\) on \(\psi \in L^2({{\,\mathrm{\mathbb {R}}\,}}^2)\) is

$$\begin{aligned}{}[{\varPi }(x,\theta )\psi ](y) = \psi ((x,\theta )^{-1}y) = \psi (R_{-\theta }(y-x)), \quad \forall y\in \mathbb {R}^2. \end{aligned}$$

Moreover, we let \(\varLambda {:}\,\mathrm{SE}(2)\rightarrow \mathcal {U}(L^2(\mathrm{SE}(2)))\) be the left-regular representation, which acts on functions \(F\in L^2(\mathrm{SE}(2))\) as

$$\begin{aligned}{}[\varLambda (x,\theta )F](y,\varphi ) = F((x,\theta )^{-1}\star (y,\varphi )) , \, \forall (y,{\varphi })\in \mathrm{SE}(2). \end{aligned}$$
(28)

Letting \(L{:}\,L^2({{\,\mathrm{\mathbb {R}}\,}}^2)\rightarrow L^2(\mathcal {M})\) be the operator that transforms visual stimuli into cortical activations, one can formalise the shift-twist symmetry by requiring

$$\begin{aligned} L\circ {\varPi }(x,\theta ) = \varLambda (x,\theta )\circ L, \quad \forall (x,\theta )\in \mathrm{SE}(2). \end{aligned}$$
(29)

Under mild continuity assumption on L, it has been shown in [43] that L is then a continuous wavelet transform. That is, there exists a mother wavelet \(\varPsi \in L^2({{\,\mathrm{\mathbb {R}}\,}}^2)\) satisfying \({\varPi }(x,\theta )\varPsi = {\varPi }(x,\theta +\pi )\varPsi \) for all \((x,\theta )\in \mathrm{SE}(2)\) such that

$$\begin{aligned} Lf(x,\theta ) = \langle {\varPi }(x,\theta )\varPsi , f \rangle , \quad \forall f\in L^2({{\,\mathrm{\mathbb {R}}\,}}^2), (x,\theta )\in \mathcal {M}. \end{aligned}$$
(30)

Observe that the operation \({\varPi }(x,\theta )\varPsi \) above is well defined for \((x,\theta )\in \mathcal {M}\) thanks to the assumption on \(\varPsi \). By (25), the above representation of L is equivalent to the fact that the RF associated with the neuron \((x,\theta )\in \mathcal {M}\) is the roto-translation of the mother wavelet, i.e. \(\psi _{(x,\theta )}={\varPi }(x,\theta )\varPsi \).

Remark 5

Letting \(\varPsi ^*(x):=\overline{\varPsi (-x)}\), the above formula can be rewritten as

$$\begin{aligned} Lf(x,\theta )= & {} \int _{{{\,\mathrm{\mathbb {R}}\,}}^2} \overline{\varPsi (R_{-\theta }(y-x))}f(y)\,\mathrm{d}y \nonumber \\= & {} \big [f * (\varPsi ^*\circ R_{-\theta })\big ] (x), \quad \forall (x,\theta )\in \mathrm{SE}(2). \end{aligned}$$
(31)

where \(f*g\) denotes the standard convolution on \(L^2({{\,\mathrm{\mathbb {R}}\,}}^2)\).

Neurophysiological evidence shows that a good fit for the RFs is given by Gabor filters, whose Fourier transform is simply the product of a Gaussian with an oriented plane wave [25]. However, these filters are quite challenging to invert and are parametrised on a bigger space than \(\mathcal M\), which takes into account also the frequency of the plane wave and not only its orientation. For this reason, in this work we chose to consider as wavelets the cake wavelets introduced in [26], see also [5]. These are obtained via a mother wavelet \(\varPsi ^{\text {cake}}\) whose support in the Fourier domain is concentrated on a fixed slice, which depends on the number of orientations one aims to consider in the numerical implementation. To recover integrability properties, the Fourier transform of this mother wavelet is then smoothly cut off via a low-pass filtering, see [5, Section  2.3] for details. Observe, however, that in order to lift to \(\mathcal M\) and not to \(\mathrm{SE}(2)\), we consider a non-oriented version of the mother wavelet, given by \(\tilde{\psi }^{\mathrm{cake}}({\omega }) + \tilde{\psi }^{\mathrm{cake}}(e^{i\pi }{\omega })\), in the notations of [5].

An important feature of cake wavelets is that, in order to recover the original image, it suffices to consider the projection operator defined by

$$\begin{aligned}&P: L^2(\mathcal M)\rightarrow L^2({{\,\mathrm{\mathbb {R}}\,}}^2), \end{aligned}$$
(32)
$$\begin{aligned}&PF(x) := \int _{\mathbb P^1} F(x,\theta )\,\mathrm{d}\theta ,\quad F\in L^2(\mathcal { M}) \end{aligned}$$
(33)

Indeed, by construction of cake wavelets, Fubini’s theorem shows that \((P\circ L)f = f\) for all \(f\in \mathcal I\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertalmío, M., Calatroni, L., Franceschi, V. et al. Cortical-Inspired Wilson–Cowan-Type Equations for Orientation-Dependent Contrast Perception Modelling. J Math Imaging Vis 63, 263–281 (2021). https://doi.org/10.1007/s10851-020-00960-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-020-00960-x

Keywords

Navigation