Skip to main content
Log in

Analysis of the apparent friction of polymeric surfaces

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The apparent friction coefficient is the ratio between the tangential force and the normal load applied to moving body in contact with the surface of a material. This coefficient includes a so-called “true local friction” at the interface and a “geometrical friction” which is the ploughing effect. The material underneath a moving tip may display various types of behaviour: elastic, elastic–plastic where elastic and plastic strain are present in the contact area, or fully plastic. As is usual in polymers, the material behaviour is time and temperature dependent and may exhibit strain hardening. A surface flow line model of a scratching tip which links the apparent friction to the local friction and contact geometry was recently proposed. An inverse analysis is used in the present work to estimate the local friction from the measured apparent friction and a knowledge of the contact area and tip shape. The polymer true friction coefficient displays temperature and sliding speed dependency, which may be attributed to the surface thermodynamics. It is shown that the local friction depends on the level of strain in the polymer at the contact interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

μapp :

Apparent friction coefficient

μ:

True friction

f ad :

Adhesive friction coefficient

μplough :

Ploughing friction coefficient

f visco :

Viscoelastic friction coefficient

f plast :

Plastic friction coefficient

F t :

Tangential force

F ad :

Adhesive force

F n :

Normal load

τapp :

Apparent interfacial shear stress

τ(or τtrue):

Shear stress at the moving contact area

τplough :

Ploughing shear stress

p m :

Contact pressure

σy :

Yield stress

p :

Local pressure at the contact

p my :

Normalised contact pressure

S n :

Real normal contact area

S t :

Tangential contact area

ds :

Contact surface element

K :

A constant

H :

Hardness

tanδ:

Loss factor

θ:

Half apex angle of the conical tip

ω:

Rear contact angle

A,B,C,D :

Elementary action integrals of the local pressure and shear

dɛ/dt (or \(\mathop\varepsilon\limits^\bullet\)):

Mean effective strain rate

V :

Sliding speed

l :

Scratch contact width

a :

Contact radius

R tip :

Radius of the tip

T :

Temperature

\(\vec{x}\vec{y}\vec{z}\) :

Axes moving with the tip

\(\vec{z}\) :

Axis of the indentation direction

\(\vec{\chi}\) :

Axis of the scratching direction

\(\vec{N}\) :

Elementary normal load vector

\(\vec{T}\) :

Elementary tangential load vector

\(\vec{n}\) :

Normal unit vector

\(\vec{t}\) :

Unit vector tangential to the flow lines

References

  1. Berthoud P, Baumberger T, G’sell C, Hiver JM (2001) Phys Rev B 59(22):14313

    Article  Google Scholar 

  2. Baumberger T, Berthoud P, Caroli C (2001) Phys Rev B 60(6):3928

    Article  Google Scholar 

  3. Greenwood JA, Williamson JB (1966) Proc Roy Soc A 295:300

    Article  CAS  Google Scholar 

  4. Bowden FP, Tabor D (1951) In: Friction and lubrication of solids. Oxford University Press, London

  5. Johnson KL, Kendall K, Roberts AD (1971) Proc R Soc Lond A 324:301

    Article  CAS  Google Scholar 

  6. Dejarguin BV, Muller VM, Toporov YUP (1975) J Colloïd Interface Sci 53:314

    Article  Google Scholar 

  7. Maugis D (1996) J Adhesion Sci Technol 10(2):161

    Article  CAS  Google Scholar 

  8. Yoshizawa H, Chen Y-L, Israelachvili J (1993) J Phys Chem 97:4128

    Article  CAS  Google Scholar 

  9. Chaudhury MK, Owen MJ (1993) Langmuir 9:29

    Article  CAS  Google Scholar 

  10. Jardret V, PhD, Ecole Centrale de Lyon, France, 1994

  11. Bucaille JL, PhD, Ecole des Mines de Paris, France, 2001

  12. Gauthier C, Schirrer R (2000) J Mater Sci 35:2121

    Article  CAS  Google Scholar 

  13. Briscoe BJ (1986) In: Friedrich K (ed) Composite materials series 1. Elsevier, p 25

  14. Moore DF (1972) The friction and lubrication of elastomers. Pergamon Press, London

    Google Scholar 

  15. Casoli A, Brendle M, Schultz J, Auray P, Reiter G (2001) Langmuir 17:388

    Article  CAS  Google Scholar 

  16. Yamada S, Israelachvili J (1998) J Phys Chem B 102:234

    Article  CAS  Google Scholar 

  17. Bhushan B (1999) Wear 225:465

    Article  Google Scholar 

  18. Basire C, Fretigny C (1997) C R Acad Sci 325 II b:211

  19. Khurshudov A, Kato K (1997) Wear 205:10

    Google Scholar 

  20. Zhang SL, Li JCM (2003) Mater Sci Eng A 344:182

    Article  Google Scholar 

  21. Bowden FP, Tabor D (1966) J Appl Phys 17:1521

    CAS  Google Scholar 

  22. Briscoe BJ, Tabor D (1975) Wear 34:29

    Article  CAS  Google Scholar 

  23. Briscoe BJ, Thomas PS (1995) Tribol Trans 38:382

    Article  CAS  Google Scholar 

  24. Briscoe BJ, Stolarski T, Davis S (1984) Tribol Int 17:129

    Article  CAS  Google Scholar 

  25. Bucaille JL, Gauthier C, Felder E, Schirrer R (2006) Wear 260:803

    Article  CAS  Google Scholar 

  26. Bulgin D, Hubbard GD, Walters MH (1962) Proc. 4th Rubber Technology Conf., London, 173

  27. Bueche AM, Flom DG (1959) Wear 2:168

    Article  Google Scholar 

  28. Ludema KC, Tabor D (1966) Wear 9:329

    Article  CAS  Google Scholar 

  29. Steijn RP (1986) In: Failure of plastics, chap 19, Hanser Publishers

  30. Gauthier C, Lafaye S, Schirrer R (2001) Tribol Int 34:469

    Article  CAS  Google Scholar 

  31. Bucaille J-L, Felder E, Hochstetter G (2001) Wear 249:422

    Article  CAS  Google Scholar 

  32. Lafaye S, Gauthier C, Schirrer R (2005) Tribol Int 38:113

    Article  Google Scholar 

  33. Goddard J, Wilman H (1962) Wear 5:114

    Article  Google Scholar 

  34. Aklonis J, MacKnight W (1983) Introduction to polymer viscoelasticity. John Wiley and Sons

  35. Briscoe BJ, Pelillo E, Shinha S (1996) Polym Eng Sci 36:2996

    Article  Google Scholar 

  36. Gauthier C, Schirrer R (2001) The viscoelastic viscoplastic behaviour of a scratch on a polymeric surface. Proc of the 2nd World Tribology Congress WTC2001, Vienna Austria September 2001, CDROM

  37. Johnson KL (1984) In: Contact mechanics. Cambridge University Press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gauthier.

Appendix

Appendix

Calculation of the ploughing friction for a hyperbolic rear contact edge

The ploughing friction for a zero true local friction is the ratio of the tangential S t to the normal contact area S n· S t is delimited

  1. (a)

    by the intersection of the conical shape \(x^2+y^2-(z\tan\theta )^2=0\) and the rear plane \(x=r\sin\omega\), where S t is part of the section included in the hyperbola (H)

    $$ -\frac{y^2}{p^2}+\frac{z^2}{q^2}-1=0 $$

    with \(p=r\sin\omega\) and \(q=r\sin\omega/\tan\theta\), and

  2. (b)

    by the plane \(z=-r/\tan\theta\).

S t is calculated from

$$S_{\rm t}=2p\int\limits_{z_1}^{z_2}{\sqrt {\frac{z^2}{q^2}-1}\hbox{d}z}$$

with the integration limits \(z_1 =-r/\tan\theta\) and \(z_2=-r\sin\omega/\tan\theta\).

If \(z=q/\sin\varphi\), then \(S_{\rm t}=-2pq\int{\frac{\hbox{d}\varphi}{\sin^3\varphi}+2pq\int{\frac{\hbox{d}\varphi }{\sin\varphi}}}\) and if \(t=\tan\varphi/2\) where \(\sin\varphi =\frac{2t}{1+t^2}\), then

$$ S_{\rm t}=\frac{2r^2\sin^2\omega}{\tan\theta}\left[{\frac{1}{8}\left( {\tan^2\varphi/2-\frac{1}{\tan^2\varphi/2}} \right)-\frac{1}{2}\hbox{ln}\left|{\tan\varphi/2}\right|}\right]_{z_1 }^{z_2} $$

where

$$\tan\varphi/2=\frac{1-\sqrt{1-\frac{r^2\sin^2\omega }{\tan^2\theta z^2}}}{\frac{r\sin\omega}{\tan\theta z}}$$

The normal contact area is \(S_{\rm n}=\left(\pi+2\omega+\sin2\omega \right)r^2/2\) and the general form of Tabor’s ploughing friction coefficient is

$$ \mu_{\rm plough}=4\cot\theta\frac{\sin^2\omega}{\left(\pi+2\omega +\sin2\omega\right)}f(\varphi) $$

where

$$f(\varphi)=\left[{\frac{1}{8}\left({\tan^2\varphi /2-\frac{1}{\tan^2\varphi/2}}\right)-\frac{1}{2}\hbox{ln}\left| {\tan\varphi/2}\right|}\right]_{-r/\tan\theta}^{-r\sin\omega /\tan\theta}$$

like \(f(\varphi)\) depends on \(\tan\theta\), \(f(\varphi)=g(\theta)\). Hence there is no analytical expression for the general case of the exact solution of the ploughing friction coefficient in the form \(\mu_{\rm plough}=2/\pi\cot\theta f(\omega)\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafaye, S., Gauthier, C. & Schirrer, R. Analysis of the apparent friction of polymeric surfaces. J Mater Sci 41, 6441–6452 (2006). https://doi.org/10.1007/s10853-006-0710-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0710-7

Keywords

Navigation