Skip to main content
Log in

Finite element analysis of the effect of back pressure during equal channel angular pressing

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

There is an increasing interest in applying back pressure during equal channel angular pressing (ECAP) to improve the process for better control of microstructure and property. The effect of increasing back pressure on deformation characteristics during ECAP such as the plastic deformation zone (PDZ) size and strain rate distribution in the PDZ, size of the corner gap and strain distribution on the longitudinal section were analysed by finite element analysis for both the quasi-perfect plastic and strain hardening materials. This investigation revealed that the back pressure influence very differently the PDZ of the quasi-perfect plastic and strain hardening materials. Many beneficial effects of back pressure were observed in the strain hardening material, with reduced PDZ size, dramatically reduced corner gap, and more uniform strain distribution. For the quasi-perfect plastic material, however, the application of increasing back pressure leads to broadening of PDZ and a decrease in strain rate homogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  2. Segal VM, Reznikov VI, Drobyshevkiy AE, Kopylov VI (1981) Russ Metall 1:99

    Google Scholar 

  3. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143

    Article  CAS  Google Scholar 

  4. Xia K, Wang J (2001) Metall Mater Trans 32A:2639

    CAS  Google Scholar 

  5. Prangnell PB, Harris C, Roberts SM (1997) Scr Mater 37:983

    Article  CAS  Google Scholar 

  6. Bowen JR, Gholinia A, Roberts SM, Prangnell PB (2000) Mater Sci Eng A287:87

    CAS  Google Scholar 

  7. Kim HS (2001) Mater Sci Eng A315:122

    CAS  Google Scholar 

  8. Kim HS, Seo MH, Hong SI (2000) Mater Sci Eng A291:86

    CAS  Google Scholar 

  9. Kim HS, Seo MH, Hong SI (2001) J Mater Proc Technol 113:622

    Article  Google Scholar 

  10. Li S, M. Bourke AM, Beyerlein IJ, et al (2004) Mater Sci Eng A382:217

    CAS  Google Scholar 

  11. Segal VM (1999) Mater Sci Eng A271:322

    CAS  Google Scholar 

  12. Segal VM (2003) Mater Sci Eng A345:36

    CAS  Google Scholar 

  13. Lee DN (2000) Scr Mater 43:115

    Article  CAS  Google Scholar 

  14. Semiatin SL, Delo DP, Shell EB (2000) Acta Mater 48:1841

    Article  CAS  Google Scholar 

  15. Moon BS, Kim HS, Hong SI (2002) Scr Mater 46:131

    Article  CAS  Google Scholar 

  16. Bowen JR, Gholinia A, Roberts SM, Prangnell PB (2000) Mater Sci Eng A287:87

    CAS  Google Scholar 

  17. Suh JY, Kim HS, Park JW, Chang JY (2001) Scr Mater 44:677

    Article  CAS  Google Scholar 

  18. Park JW, Suh JY (2001) Metall Mater Trans 32A:3007

    CAS  Google Scholar 

  19. Kim HS, Seo MH, Hong SI (2001) J Mater Process Technol 113:622

    Article  Google Scholar 

  20. Delo DP, Semiatin SL (1999) Metall Mater Trans 30A:1391

    CAS  Google Scholar 

  21. Zhernakov VS, Budilov IN, Raab GI, Alexandrov IV, Valiev RZ (2001) Scr Mater 44:1765

    Article  CAS  Google Scholar 

  22. Yamashita A, Horita Z, Langdon TG (2000) Metall Mater Trans A300:142

    Google Scholar 

  23. Xia K, Wang JT, Wu X, Chen G, Gurvan M (2005) Mater Sci Eng A410–411:324

    Google Scholar 

  24. Zehetbauer MJ, Steiner G, Schafler E, Korznikov A, Korznikova E (2006) Mater Sci Forum, 503–504:57

    Google Scholar 

  25. Xia K, Wu X (2005) Scr Mater 53:1225

    Article  CAS  Google Scholar 

  26. Oh SJ, Kang SB (2003) Mater Sci Eng A343:107

    CAS  Google Scholar 

  27. Ye. Lapovok R (2006) Mater Sci Forum 503–504:37

    Article  Google Scholar 

  28. Lee DN (1996) Plastic Deformation Theory, Moonoondang, Seoul, p 92

    Google Scholar 

  29. Hong SI, Gray III GT, Wang Z (1996) Mater Sci Eng A221:38

    CAS  Google Scholar 

  30. Altan T, Oh SI, Gegel HL (1983) Metal forming fundamentals and applications, American society for metals, Ohio, Carnes Publication Services, p 58 and p 237

Download references

Acknowledgements

The work is supported partially by the National Nature Science Foundation of China under Grant No. 50474028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Tao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, F., Wang, J.T., Su, Y.L. et al. Finite element analysis of the effect of back pressure during equal channel angular pressing. J Mater Sci 42, 1491–1500 (2007). https://doi.org/10.1007/s10853-006-0762-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0762-8

Keywords

Navigation