Skip to main content
Log in

Energy based model to assess interfacial adhesion using a scratch test

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A common way to improve the scratch resistance of a sensitive surface is to coat it with a thin film. However, the substrate/thin film adhesion must be well controlled and measurable. The contribution of the present work is to propose a global energy balance model of the blistering process for the scratching of a substrate/thin film system, which permits one to determine the adhesion of the system. The adhesion can be measured by following the delaminated area as a function of the scratching distance during blistering. The particular case of an experimental stable blistering process was studied and the corresponding substrate/thin film adhesion was derived using the global energy balance model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

V tip :

Scratching velocity

F n , F t :

Normal and tangential loads respectively

T :

Temperature

ΔW :

Work provided by the loading indenter

ΔEF :

Fracture energy

ΔED :

Energy released in dissipative phenomena other than fracture

ΔEE :

Elastic energy

d :

Scratching distance

µ app :

Apparent friction coefficient

µ local :

Local friction coefficient

ΔAinterf. :

Surface created at the interface

ΔAcoh. :

Surface created within the material

γ s−interf. :

Surface energy required to create 1 unit of interfacial new surface

γ s−coh. :

Surface energy required to create 1 unit of cohesive new surface

δW D :

Dissipative work (fracture excluded) per unit of scratching distance

δW E :

Elastic work per unit of scratching distance

δW DP :

Plastic deformation work of the system per unit of scratching distance

δW DF :

Work due to the true local friction

σ y :

Yield stress of the substrate

S t :

Cross section of the plastic zone in the scratching track left on the surface

ΔAB :

Area of the blister

p atm :

Atmospheric pressure

\( \overline {h_{{\text{a}}} } \) :

Average height of the blister

ΔA :

Delaminated area variation

Δd :

Scratching distance variation

W idth :

Width of the blister as defined in Fig. 1

R :

Radius of curvature of the indenter tip

a :

Contact radius

e :

Thickness of the film

L g :

Width of the groove

\( \dot \varepsilon \) :

Strain rate

References

  1. Bull SJ, Berasetegui EG (2006) Tribol Int 39:99. doi:https://doi.org/10.1016/j.triboint.2005.04.013

    Article  CAS  Google Scholar 

  2. Hutchinson JW, Suo Z (1992) Adv Appl Mech 29:63

    Article  Google Scholar 

  3. Mittal KL (1978) Adhesion measurement of thin films, thick films and bulk coatings. STP 640, ASTM, Philadelphia, PA

  4. Thouless MD (1998) Eng Fract Mech 61:75. doi:https://doi.org/10.1016/S0013-7944(98)00049-6

    Article  Google Scholar 

  5. Volinsky AA, Moody NR, Gerberich WW (2002) Acta Mater 50:441. doi:https://doi.org/10.1016/S1359-6454(01)00354-8

    Article  CAS  Google Scholar 

  6. Ritter JE, Lardner TJ, Rosenfeld L, Lin MR (1989) J Appl Phys 66:3626. doi:https://doi.org/10.1063/1.344071

    Article  CAS  Google Scholar 

  7. Bull SJ, Rickerby DS (1990) Surf Coat Tech 42:149. doi:https://doi.org/10.1016/0257-8972(90)90121-R

    Article  CAS  Google Scholar 

  8. Perry AJ (1983) Thin Solid Films 107:167. doi:https://doi.org/10.1016/0040-6090(83)90019-6

    Article  CAS  Google Scholar 

  9. Kriese MD, Boismier DA, Moody NR, Gerberich WW (1998) Eng Fract Mech 61:1. doi:https://doi.org/10.1016/S0013-7944(98)00050-2

    Article  Google Scholar 

  10. Holmberg K, Laukkanen A, Ronkainen H, Wallin K, Varjus S, Koskinen J (2006) Surf Coat Tech 200:3793. doi:https://doi.org/10.1016/j.surfcoat.2005.03.040

    Article  CAS  Google Scholar 

  11. Blees MH, Winkelman GB, Balkenende AR, den Toonder JMJ (2000) Thin Solid Films 359:1. doi:https://doi.org/10.1016/S0040-6090(99)00729-4

    Article  CAS  Google Scholar 

  12. Bull SJ (1997) Tribol Int 30:491. doi:https://doi.org/10.1016/S0301-679X(97)00012-1

    Article  CAS  Google Scholar 

  13. Li J, Beres W (2007) Can Metall Q 46:155

    Article  CAS  Google Scholar 

  14. Le Houérou V, Robert C, Gauthier C, Schirrer R (2008) Wear 265:507. doi:https://doi.org/10.1016/j.wear.2007.11.019

    Article  Google Scholar 

  15. Gauthier C, Schirrer R (2000) J Mater Sci 35:2121. doi:https://doi.org/10.1023/A:1004798019914

    Article  CAS  Google Scholar 

  16. Dupeux M (2004) Mecanique Indust 5:441. doi:https://doi.org/10.1051/meca:2004044

    Article  Google Scholar 

  17. Bucaille JL, Gauthier C, Felder E, Schirrer R (2006) Wear 260:803. doi:https://doi.org/10.1016/j.wear.2005.04.007

    Article  CAS  Google Scholar 

  18. Lafaye S, Gauthier C, Schirrer R (2005) Tribol Int 38:113. doi:https://doi.org/10.1016/j.triboint.2004.06.006

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank C. Robert for his preliminary experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Le Houérou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Houérou, V., Gauthier, C. & Schirrer, R. Energy based model to assess interfacial adhesion using a scratch test. J Mater Sci 43, 5747–5754 (2008). https://doi.org/10.1007/s10853-008-2869-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2869-6

Keywords

Navigation