Skip to main content
Log in

The morphology and phase mixing studies on poly(ester–urethane) during shape memory cycle

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three series of shape memory poly(ester–urethane) with varying hard-segment contents were synthesized. The materials were designed to display a three-phase structure consisting of a disperse phase formed by crystallites and hard domains embedded in an amorphous matrix. The initial undeformed morphology was investigated using techniques such as modulated differential scanning calorimetry, Fourier transform infrared spectroscopy, and wide angle X-ray scattering. These techniques were used to determine the phase separation, hydrogen-bonding structure, and crystalline fraction of the specimens prior to thermo-mechanical treatments. The obtained information was correlated with small angle X-ray scattering investigations of morphological changes that occurred during shape memory cycling. The deformation cycle led to the formation of an oriented nanostructure derived from chain alignment. The nanostructure recovered was observed to be triggered by the melting of the crystallites and bulk incompatibility. A relationship between the ability of the studied poly(ester–urethane) specimens to recover their original shape and their original nanostructure was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Szycher M (1999) Szycher’s handbook of polyurethanes, chap 1.1–1.6. CRC Press, London

    Google Scholar 

  2. Oertel G (1994) Polyurethane handbook, 2nd edn. Hanser Publisher, New York, pp 11–45

    Google Scholar 

  3. Pan H, Chen D (2007) Eur Polym J 43:3766

    Article  CAS  Google Scholar 

  4. Chen G, Ma Y, Zheng X et al (2007) J Polym Sci B 45(6):654

    Article  CAS  Google Scholar 

  5. Lendlein A, Langer R (2002) Science 296(5573):1673

    Article  Google Scholar 

  6. Wilson TS, Small W, Benett WJ et al (2005) In: Proc SPIE Int Soc Opt Eng, 60070R-1-8

  7. Miaudet P, Derre A, Maugey M et al (2007) Science 318:1294

    Article  CAS  Google Scholar 

  8. Gall K, Dunn ML, Liu YP, Stefanic G, Balzar (2004) Appl Polym Sci 85(2):290

    CAS  Google Scholar 

  9. Gall K, Kreiner P, Turner D, Hulse M (2004) J Micro Sys 13(3):472

    Article  Google Scholar 

  10. Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier Science, Amsterdam, p 121

    Google Scholar 

  11. Oliveira W, Glasser WG (1994) Macromolecules 27:5

    Article  Google Scholar 

  12. Bao H, Zhang Z, Ying S (1996) Polymer 37(13):2751

    Article  CAS  Google Scholar 

  13. Seymour RW, Cooper RL (1973) Macromolecules 6:48

    Article  CAS  Google Scholar 

  14. Gunes IS, Jana SC (2008) J Nanosci Nanotechnol 8(4):1616

    Article  CAS  Google Scholar 

  15. Gorna K, Gogolewski S (2002) Polym Degrad Stab 75(1):113

    Article  CAS  Google Scholar 

  16. Yeganeh H, Lakouraj MM, Jamshidi S (2005) Eur Polym J 41(10):2370

    Article  CAS  Google Scholar 

  17. Jiang X, Li JH, Ding MM et al (2007) Eur Polym J 43(5):1838

    Article  CAS  Google Scholar 

  18. Ayres E, Oréfice RL, Yoshida MI (2007) Eur Polym J 43(8):3510

    Article  CAS  Google Scholar 

  19. Coates JP (2000) In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, UK, pp 10815–10837

    Google Scholar 

  20. Marcos-Fernández A, Abraham GA, Valentín JL, San Román J (2006) Polymer 47(3):785

    Article  Google Scholar 

  21. Chattopadhyay DK, Sreedhar B, Raju KVSN (2006) Polymer 47(11):3814

    Article  CAS  Google Scholar 

  22. Cho JW, Lee SH (2004) Eur Polym J 40(7):1343

    Article  CAS  Google Scholar 

  23. Huang SL, Lai JY (1997) Eur Polym J 33(10–12):1563

    Article  CAS  Google Scholar 

  24. Liu Y, Pan C (1998) Eur Polym J 34(5–6):621

    CAS  Google Scholar 

  25. Nakamae K, Nishino T, Asaoka S et al (1999) Int J Adhes Adhes 19(5):345

    Article  CAS  Google Scholar 

  26. Pompe G, Pohlers A, Pötschke P, Pionteck J (1998) Polymer 39(21):5147

    Article  CAS  Google Scholar 

  27. Lin JR, Chen LW (1998) J Appl Polym Sci 69(8):1563

    Article  CAS  Google Scholar 

  28. Li YJ, Gao T, Liu J et al (1992) Macromolecules 25(26):7365

    Article  CAS  Google Scholar 

  29. Pretsch T, Jakob I, Werner M (2009) Polym Degrad Stab 94:61

    Article  CAS  Google Scholar 

  30. Tien YI, Wei KH (2001) Polymer 42(7):3213

    Article  CAS  Google Scholar 

  31. Jia QM, Zheng M, Zhu YC et al (2007) Eur Polym J 43(1):35

    Article  CAS  Google Scholar 

  32. Kim BK, Lee SY, Xu M (1996) Polymer 37(26):5781

    Article  CAS  Google Scholar 

  33. Xu J, Shi W, Pang W (2006) Polymer 47(1):457

    Article  CAS  Google Scholar 

  34. Charnetskaya AG, Polizos G, Shtompel VI et al (2003) Eur Polym J 39(11):2167

    Article  CAS  Google Scholar 

  35. Wang ZG, Hsiao BS, Fu BX et al (2000) Polymer 41(5):1791

    Article  CAS  Google Scholar 

  36. Wang SH, Zhang Y, Ren WT et al (2005) Polym Test 24(6):766

    Article  CAS  Google Scholar 

  37. Jiang ZY, Tang YJ, Men YF et al (2007) Macromolecules 40(20):7263

    Article  CAS  Google Scholar 

  38. Chang SL, Yu TL, Huang CC, Chen WC, Linliu K, Lin TL (1998) Polymer 39(15):3479

    Article  CAS  Google Scholar 

  39. Li YJ, Kang WX, Stoffer JO et al (1994) Macromolecules 27(2):612

    Article  CAS  Google Scholar 

  40. Tang YJ, Jiang ZY, Men YF et al (2007) Polymer 48(17):5125

    Article  CAS  Google Scholar 

  41. Lee BS, Chun BC, Chung YC et al (2001) Macromolecules 34(18):6431

    Article  CAS  Google Scholar 

  42. Yang JH, Chun BC, Chung YC, Cho JH (2003) Polymer 44(11):3

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the following institutions: the National Council for Scientific and Technological Development (CNPq), a foundation linked to the Ministry of Science and Technology (MCT) of the Brazilian Government; the State of Minas Gerais Research Foundation (FAPEMIG); and the National Synchrotron Light Laboratory (LNLS-Brazil) for the use of the SAXS beamline facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Oréfice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, I.M., Oréfice, R.L. The morphology and phase mixing studies on poly(ester–urethane) during shape memory cycle. J Mater Sci 45, 511–522 (2010). https://doi.org/10.1007/s10853-009-3969-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3969-7

Keywords

Navigation