Skip to main content
Log in

Synthesis and characterization of mesoporous silica/poly(N-isopropylacrylamide) functional hybrid useful for drug delivery

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recent studies indicate the use of mesoporous silica and polymeric sensitive hydrogels as suitable for drug delivery systems due to their specific characteristics. Polymeric hydrogels, such as poly(N-isopropylacrylamide) [P(N-iPAAm)], show volumetric expansion/contraction behaviour at 306 K, which that can be used to develop a thermosensitive drug delivery system. In this study, we report a facile and direct synthesis route to obtain hybrid functional nanosystems based on silica-P(N-iPAAm) by using a neutral surfactant and without any functionalization method and the assessment of its release rate of a model drug. The materials were characterized by Fourier transform infrared spectroscopy, nitrogen adsorption, scanning electron microscopy, transmission electron microscopy and thermal analysis. A release assay with atenolol monitored by UV–Vis spectroscopy was performed for pure SBA-15 and a hybrid system at different temperatures in order to evaluate the influence of the thermosensitive behaviour of the polymer on the release kinetics. The response of the hybrid system as a drug delivery device is influenced by the volumetric contraction of P(N-iPAAm) up to the lower critical solution temperature (LCST) due to phase transition. Above the LCST, drug release depends essentially on the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hamley IW (2003) Nanotechnology 14:39

    Article  ADS  Google Scholar 

  2. Soler-Illia GJAA, Sanchez C, Lebeau B, Patarin J (2002) Chem Rev 102:4093

    Article  PubMed  CAS  Google Scholar 

  3. Paul W, Sharma CP (2006) Am J Biochem Biotechnol 2:41

    Article  CAS  Google Scholar 

  4. Rusu VM, Ng CH, Wilke M, Tiersch B, Fratzl P, Peter MG (2005) Biomaterials 26:5414

    Article  CAS  PubMed  Google Scholar 

  5. Davis ME (2002) Nature 417:813

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Taguchi A, Schuth F (2005) Microporous Mesoporous Mater 77:1

    Article  CAS  Google Scholar 

  7. Izquierdo-Barba I, Colilla M, Vallet-Regí M (2008) J Nanomater 3:1

  8. Sousa A, Souza KC, Reis SC, Sousa RG, Windmöller D, Machado JC, Sousa EMB (2008) J Non-Cryst Solids 354:4800

    Article  CAS  ADS  Google Scholar 

  9. Sousa A, Souza KC, Sousa EMB (2008) Acta Biomater 4:671

    Article  CAS  PubMed  Google Scholar 

  10. Wan Y, Shia Y, Zhao D (2007) Chem Commun 897

  11. Sousa A, Sousa EMB (2006) J Non-Cryst Solids 352:3451

    Article  CAS  ADS  Google Scholar 

  12. Geever LM, Nugent MJD, Higginbotham CL (2007) J Mater Sci 42:9845. doi:10.1007/s10853-007-1814-4

    Article  CAS  ADS  Google Scholar 

  13. Lee WF, Lin YH (2006) J Mater Sci 41:7333. doi:10.1007/s10853-006-0882-1

    Article  CAS  ADS  Google Scholar 

  14. Freitas RFS, Cussler EL (1987) Chem Eng Sci 42:97

    Article  CAS  Google Scholar 

  15. Sousa RG, Prior-Cabanillas A, Quijada-Garrido I, Barales-Rienda JM (2005) J Controlled Release 102:595

    Article  CAS  Google Scholar 

  16. You YZ, Kalebaila KK, Brock SL, Oupicky D (2008) Chem Mater 20:3354

    Article  CAS  Google Scholar 

  17. Zhou Z, Zhu S, Zhang D (2007) J Mater Chem 17:2428

    Article  CAS  Google Scholar 

  18. Zhu S, Zhou Z, Zhang D, Jin Li Z (2007) Microporous Mesoporous Mater 106:56

    Article  CAS  Google Scholar 

  19. Chang JH, Kim KJ, Shin Y-K (2004) Bull Korean Chem Soc 25:1257

    Article  CAS  Google Scholar 

  20. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024

    Article  CAS  Google Scholar 

  21. Sousa RG, Magalhães WF, Freitas RFS (1998) Polym Degrad Stab 61:275

    Article  CAS  Google Scholar 

  22. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  23. Sayari A, Liu P, Kruk M, Jaroniec M (1997) Chem Mater 9:2499

    Article  CAS  Google Scholar 

  24. Gregg SJ, Sing KSW (1982) Standard data for alpha-s method comment, 2nd edn. p. 93

  25. Cheng Q, Pavlinek V, Lengalova A, Li C, He Y, Saha P (2006) Microporous Mesoporous Mater 93:263

    Article  CAS  Google Scholar 

  26. Choi M, Kleitz F, Liu D, Lee HY, Ahn W-S, Ryoo R (2005) J Am Chem Soc 127:1924

    Article  CAS  PubMed  Google Scholar 

  27. Kruk M, Jaroniec M, Joo SH, Ryoo R (2003) J Phys Chem B 107:2205

    Article  CAS  Google Scholar 

  28. Kruk M, Jaroniec M (2001) Chem Mater 13:3169

    Article  CAS  Google Scholar 

  29. Kruk M, Jaroniec M, Sayari A (1997) Langmuir 13:6267

    Article  CAS  Google Scholar 

  30. Satarkar NS, Hilt ZJ (2008) Acta Biomater 4(1):11

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study has been supported by CAPES, CNPq and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edésia Martins Barros de Sousa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Sousa, A., Maria, D.A., de Sousa, R.G. et al. Synthesis and characterization of mesoporous silica/poly(N-isopropylacrylamide) functional hybrid useful for drug delivery. J Mater Sci 45, 1478–1486 (2010). https://doi.org/10.1007/s10853-009-4106-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4106-3

Keywords

Navigation