Skip to main content
Log in

Spatial organization of peptide nanotubes for electrochemical devices

  • ICAM 2009
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel biosensor for hydrogen peroxide was developed by combining the known properties of microperoxidase-11 (MP11) as an oxidation catalyst, and the interesting properties of diphenylalanine peptide nanotubes (PNTs) as a supporting matrix to allow a good bioelectrochemical interface. In this case, the synthesized MP11/PNTs were immobilized onto the ITO electrode surface via layer-by-layer (LBL) deposition, using poly(allylamine hydrochloride) (PAH) as positively charged polyelectrolyte layers. The PNTs provide a favorable microenvironment for MP11 to perform direct electron transfer to the electrode surface. The resulting electrodes showed a pair of well-defined redox peaks with formal potential at about −343 mV (versus SCE) in phosphate buffer solution (pH 7). The experimental results also demonstrated that the resulting biosensor exhibited good electrocatalytic activity to the reduction of H2O2 with a sensitivity of 9.43 μA cm−2 mmol−1 L, and a detection limit of 6 μmol L−1 at the signal-to-noise ratio of 3. Moreover, we also observed that the peptides self-assembly can be influenced upon changing the pH of the solution. Alkaline solution appears to favor the packing of diphenylalanine nanotubes being closer than acidic or neutral conditions. The study proved that the combination of PNTs with MP11 is able to open new opportunities for the design of enzymatic biosensors with potential applications in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang S (2003) Nat Biotechnol 21:1171

    Article  PubMed  CAS  Google Scholar 

  2. Sarikaya M (1999) Proc Natl Acad Sci USA 96:14183

    Article  PubMed  ADS  CAS  Google Scholar 

  3. Seeman NC, Belcher AM (2002) PNAS 99:6451

    Article  PubMed  ADS  CAS  Google Scholar 

  4. Kohli P, Martin CR (2005) Curr Pharm Biotechnol 6:35

    PubMed  CAS  Google Scholar 

  5. Scanlon S, Aggeli A (2008) Nano Today 3:22

    Article  CAS  Google Scholar 

  6. Gao X, Matsui H (2005) Adv Mater 17:2037

    Article  CAS  Google Scholar 

  7. Reches M, Gazit E (2006) Phys Biol 3:S10

    Article  PubMed  ADS  CAS  Google Scholar 

  8. Reches M, Gazit E (2003) Science 300:625

    Article  PubMed  ADS  CAS  Google Scholar 

  9. Adler-Abramovich L, Reches M, Sedman VL, Allen S, Tendler SJB, Gazit E (2006) Langmuir 22:1313

    Article  PubMed  CAS  Google Scholar 

  10. de Groot NS, Parella T, Aviles FX, Vendrell J, Ventura S (2007) Biophys J 92:1732

    Article  PubMed  CAS  Google Scholar 

  11. Sopher NB, Abrams ZR, Reches M, Gazit E, Hanein Y (2007) J Micromech Microeng 17:2360

    Article  CAS  Google Scholar 

  12. Yemini M, Reches M, Gazit E, Rishpon J (2005) Anal Chem 77:5155

    Article  PubMed  CAS  Google Scholar 

  13. Gorbitz CH (2006) Chem Commun 2332

  14. Han TH, Park JS, Oh JK, Kim SO (2008) J Nanosci Nanotechnol 8:5547

    Article  PubMed  CAS  Google Scholar 

  15. Alves WA, Fiorito PA, Froyer G, Haber FE, Vellutini L, Torresi RM, Cordoba de Torresi SI (2008) J Nanosci Nanotechnol 8:3570

    Article  PubMed  CAS  Google Scholar 

  16. Katz E, Sheeney-Haj-Ichia L (2006) Angew Chem Int Ed 43:3292

    Article  Google Scholar 

  17. Nicolis S, Casella L, Roncone R, Dallacosta C, Monzani E (2007) C R Chimie 10:1

    Google Scholar 

  18. Dallacosta C, Alves WA, Ferreira AMDC, Monzani E, Casella L (2007) J Chem Soc Dalton Trans 21:2197

    Google Scholar 

  19. Lotzbeyer T, Schuhmann W, Katz E, Falter J, Schmidt H-L (1994) J Electroanal Chem 377:291

    Article  Google Scholar 

  20. Merrifield RB (1963) J Am Chem Soc 85:2149

    Article  CAS  Google Scholar 

  21. Matsueda GR, Stewart JM (1981) Peptides 2:45

    Article  PubMed  CAS  Google Scholar 

  22. Kaiser E, Bossinger CD, Colescott RL, Olsen DB (1980) Anal Chim Acta 118:149

    Article  CAS  Google Scholar 

  23. Oliveira VX, Fazio MA, Santos EL, Pesquero JB, Miranda A (2008) J Pept Sci 14:617

    Article  PubMed  CAS  Google Scholar 

  24. Yan X, Cui Y, He Q, Wang K, Li J (2008) Chem Mater 20:1522

    Article  CAS  Google Scholar 

  25. Matsui H, Gologan B (2000) J Phys Chem B 104:3383

    Article  CAS  Google Scholar 

  26. Gorbitz CH (2001) Chem Eur J 7:5153

    Article  CAS  Google Scholar 

  27. Castelletto V, Hamley IW, Harris PJF, Olsson U, Spencer N (2009) J Phys Chem B 113:9978

    Article  PubMed  CAS  Google Scholar 

  28. Surewicz WK, Mantsch HH, Chapman D (1993) Biochemistry 32:389

    Article  PubMed  CAS  Google Scholar 

  29. Nagai Y, Nakanishi T, Okamoto H, Takeda K, Furukawa Y, Usui K, Mihara H (2005) Jpn J Appl Phys 44:7654

    Article  ADS  CAS  Google Scholar 

  30. Douberly GE Jr, Pan S, Walters D, Matsui H (2001) J Phys Chem B 105:7612

    Article  CAS  Google Scholar 

  31. Matsui H, Pan S, Douberly GE Jr (2001) J Phys Chem B 105:1683

    Article  CAS  Google Scholar 

  32. Dorr S, Schade U, Hellwig P (2008) Vib Spectrosc 47:59

    Article  CAS  Google Scholar 

  33. Matsui H, MacCuspie R (2001) Nano Lett 1:671

    Article  ADS  CAS  Google Scholar 

  34. George P, Hanania G (1952) Biochem J 52:517

    PubMed  CAS  Google Scholar 

  35. Donoghue DO, Magner E (2007) Electrochim Acta 53:1134

    Article  CAS  Google Scholar 

  36. Jiang H-J, Zhao Y, Yang H, Akins DL (2009) Mater Chem Phys 114:879

    Article  CAS  Google Scholar 

  37. Liu Y, Wang M, Zhao F, Guo Z, Chen H, Dong S (2005) J Electroanal Chem 581:1

    Article  CAS  Google Scholar 

  38. Munteanu FD, Lindgren A, Emnéus J, Gorton L, Ruzgas T, Csoregi E, Ciuru A, van Huystee RB, Gazaryan IG, Lagrimini LM (1998) Anal Chem 70:2596

    Article  PubMed  CAS  Google Scholar 

  39. Wan J, Bi J, Du P, Zhang S (2009) Anal Biochem 386:256

    Article  PubMed  CAS  Google Scholar 

  40. Razumas V, Kazlauskaite J, Vidziunaite R (1996) Bioelectrochem Bioenerg 39:139

    Article  CAS  Google Scholar 

  41. Ren C, Song Y, Li Z, Zhu G (2005) Anal Bioanal Chem 381:1179

    Article  PubMed  CAS  Google Scholar 

  42. Huang W, Jia J, Zhang Z, Han X, Tang J, Wang J, Dong S, Wang E (2003) Biosens Bioelectron 18:1225

    Article  PubMed  CAS  Google Scholar 

  43. Korri-Youssoufi H, Desbenoit N, Ricoux R, Mahy J-P, Lecomte S (2008) Mater Sci Eng C 28:855

    Article  CAS  Google Scholar 

  44. Wang M, Zhao F, Liu Y, Dong S (2005) Biosens Bioelectron 21:159

    Article  PubMed  CAS  Google Scholar 

  45. Xiang C, Zou Y, Sun L-X, Xu F (2007) Talanta 74:206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant No. 08/51074-6, 08/53576-9, 05/53241-9 and 08/55549-9) is gratefully acknowledged. This work was also supported by INCT in Bioanalytics (FAPESP, Grant No. 08/57805-2 and CNPq, Grant No. 573672/2008-3). We are also thankful to LME–LNLS (Project SEM–LV 9004 and SEM–FEG 8511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Alves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cipriano, T.C., Takahashi, P.M., de Lima, D. et al. Spatial organization of peptide nanotubes for electrochemical devices. J Mater Sci 45, 5101–5108 (2010). https://doi.org/10.1007/s10853-010-4478-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4478-4

Keywords

Navigation