Skip to main content
Log in

Effect of annealing on the structural, electrical and magnetic properties of Gd-implanted ZnO thin films

  • Materials in New Zealand
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report the results from structural, electrical and magnetic measurements on Gd-implanted ion beam deposited zinc oxide (ZnO) films. 40 keV Gd ions were implanted into 150 nm thick ZnO films with fluence 2.8 × 1015 cm−2. RBS spectra reveal the implanted atoms are located in the near-surface region in as-implanted and up to 923 K annealed films, diffusing deeper into the films after 1073 K annealing. SEM images show that the average grain size increases from 10 to 30 nm upon annealing. High-resolution and energy-filtered transmission electron microscopy of a ZnO:Gd sample annealed at 923 K reveal the presence of Gd-rich regions in the film, but no evidence of pure Gd precipitates. Annealing increases the resistivity, and the carrier concentration decreases by as much as six orders of magnitude after annealing at up to 1073 K. All annealed films display a mix of paramagnetic, superparamagnetic and ferromagnetic behaviour extending to temperatures above 300 K that we attribute to the spatially inhomogeneous Gd distribution. The paramagnetic behaviour can be attributed to isolated Gd moments, while the ordered magnetic phases appear to arise from Gd-rich regions within the ZnO. X-ray absorption near edge spectroscopy provides evidence that there exist oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Science 294:1488

    Article  CAS  Google Scholar 

  2. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Science 287:1019

    Article  CAS  Google Scholar 

  3. Barzykin V (2005) Phys Rev B 71:155203

    Article  Google Scholar 

  4. Jalbout AF, Chen H, Whittenburg SL (2002) Appl Phys Lett 81:2217

    Article  CAS  Google Scholar 

  5. Coey JMD, Venkatesan M, Fitzgerald CB (2005) Nat Mater 4:173

    Article  CAS  Google Scholar 

  6. Jungwirth T, Wang KY, Masek J, Edmonds KW, Konig J, Sinova J, Polini M, Goncharuk NA, MacDonald AH, Sawicki M, Rushforth AW, Campion RP, Zhao LX, Foxon CT, Gallagher BL (2005) Phys Rev B 72:165204

    Article  Google Scholar 

  7. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) J Appl Phys 98:041301

    Article  Google Scholar 

  8. Sato K, Katayama-Yoshida H (2002) Semicond Sci Technol 17:367

    Article  CAS  Google Scholar 

  9. Song C, Geng KW, Zeng F, Wang XB, Shen YX, Pan F, Xie YN, Liu T, Zhou HT, Fan Z (2006) Phys Rev B 73:024405

    Article  Google Scholar 

  10. Park JH, Kim MG, Jang HM, Ryu S, Kim YM (2004) Appl Phys Lett 84:1338

    Article  CAS  Google Scholar 

  11. Norton DP, Overberg ME, Pearton SJ, Pruessner K, Budai JD, Boatner LA, Chisholm MF, Lee JS, Khim ZG, Park YD, Wilson RG (2003) Appl Phys Lett 83:5488

    Article  CAS  Google Scholar 

  12. Bouloudenine M, Viart N, Colis S, Kortus J, Dinia A (2005) Appl Phys Lett 87:052501

    Article  Google Scholar 

  13. Golmar F, Villafuerte M, Navarro AM, Torres CER, Barzola-Quiquia J, Esquinazi P, Heluani SP (2010) J Mater Sci 45:6174. doi:10.1007/s10853-010-4710-2

    Article  CAS  Google Scholar 

  14. de Carvalho HB, de Godoy MPF, Paes RWD, Mir M, de Zevallos AO, Iikawa F, Brasil MJSP, Chitta VA, Ferraz WB, Boselli MA, Sabioni ACS (2010) J Appl Phys 108:033914

    Article  Google Scholar 

  15. Khalid M, Ziese M, Setzer A, Esquinazi P, Lorenz M, Hochmuth H, Grundmann M, Spemann D, Butz T, Brauer G, Anwand W, Fischer G, Adeagbo WA, Hergert W, Ernst A (2009) Phys Rev B 80:035331

    Article  Google Scholar 

  16. Qi J, Yang Y, Zhang L, Chi J, Gao D, Xue D (2009) Scr Mater 60:289

    Article  CAS  Google Scholar 

  17. Potzger K, Zhou S, Eichhorn F, Helm M, Skorupa W, Mucklich A, Fassbender J, Herrmannsdorfer T, Bianchi A (2006) J Appl Phys 99:063906

    Article  Google Scholar 

  18. Ungureanu M, Schmidt H, von Wenckstern H, Hochmuth H, Lorenz M, Grundmann M, Fecioru-Morariu M, Guntherodt G (2007) Thin Solid Films 515:8761

    Article  CAS  Google Scholar 

  19. Subramanian M, Thakur P, Tanemura M, Hihara T, Ganesan V, Soga T, Chae KH, Jayavel R, Jimbo T (2010) J Appl Phys 108:053904

    Article  Google Scholar 

  20. Shi H, Zhang P, Li SS, Xia JB (2009) J Appl Phys 106:023910

    Article  Google Scholar 

  21. Monteiro T, Neves AJ, Carmo MC, Soares MJ, Peres M, Alves E, Rita E, Wahl U (2006) Superlattices Microstruct 39:202

    Article  CAS  Google Scholar 

  22. Kennedy J, Carder DA, Markwitz A, Reeves RJ (2010) J Appl Phys 107:103518

    Article  Google Scholar 

  23. Murmu PP, Kennedy J, Markwitz A, Ruck BJ (2009) AIP Conf Proc 1151:185

  24. Kennedy J, Pithie J, Markwitz A (2008) Proc SPIE 6800: 68001P-1

  25. Markwitz A, Kennedy J (2009) Int J Nanotech 6:369

    Article  CAS  Google Scholar 

  26. Biersack JP (1987) Nucl Instrum Methods Phys Res B 27:21

    Article  Google Scholar 

  27. Kennedy J, Markwitz A, Trodahl HJ, Ruck BJ, Durbin SM, Gao W (2007) J Electron Mater 36(4):472

    Article  CAS  Google Scholar 

  28. Doolittle LR (1985) Nucl Instrum Methods Phys Res B 9:334

    Article  Google Scholar 

  29. Koskelo O, Räisänen J, Tuomisto F, Eversheimc D, Grasza K, Mycielski A (2010) Thin Solid Films 518:3894

    Article  CAS  Google Scholar 

  30. Dietl T, Andrearczyk T, Lipińska A, Kiecana M, Tay M, Wu Y (2007) Phys Rev B 76:155312

    Article  Google Scholar 

  31. Look DC, Hemsky JW, Sizelove JR (1999) Phys Rev Lett 82:2552

    Article  CAS  Google Scholar 

  32. Tuomisto F, Saarinen K, Look DC, Farlow GC (2005) Phys Rev B 72:085206

    Article  Google Scholar 

  33. Kim YJ, Kim HJ (1999) Mater Lett 41:159

    Article  CAS  Google Scholar 

  34. Roeland LW, Cock GJ, Muller FA, Moleman AC, McEwen KA, Jordan RG, Jones DW (1975) J Phys F Met Phys 5:L233

    Article  CAS  Google Scholar 

  35. Reule H, Hirscher M (2000) J Alloys Compd 298:1

    Article  CAS  Google Scholar 

  36. Wang DH, Huang SL, Han ZD, Su ZH, Wang Y, Du YW (2004) Solid State Commun 131:97

    Article  CAS  Google Scholar 

  37. Moon RM, Koehler WC (1975) Phys Rev B 11:1609

    Article  CAS  Google Scholar 

  38. Martinez B, Sandiumenge F, Balcells L, Arbiol J, Sibieude F, Monty C (2005) Phys Rev B 72:165202

    Article  Google Scholar 

  39. Preston ARH, Ruck BJ, Piper LFJ, De Masi A, Smith KE, Schleife A, Fuchs F, Bechstedt F, Chai J, Durbin SM (2008) Phys Rev B 78:155114

    Article  Google Scholar 

  40. Thakur P, Chae KH, Kim JY, Subramanian M, Jayavel R, Asokan K (2007) Appl Phys Lett 91:162503

    Article  Google Scholar 

  41. Singh AP, Kumar R, Thakur P, Brookes NB, Chae KH, Choi WK (2009) J Phys Condens Matter 21:185005

    Article  Google Scholar 

  42. Thole BT, van der Laan G, Fuggle JC, Sawatzky GA, Karnatak RC, Esteva JM (1985) Phys Rev B 32:5107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Foundation for Research Science and Technology of New Zealand (C05X0408) and the MacDiarmid Institute. The authors are grateful to the New Zealand synchrotron group and the Soft X-ray Beamline scientist Dr. Bruce Cowie, and other staff at the Australian Synchrotron for their help. The authors acknowledge the assistance provided by Dr. Toby Hopf for SEM, and Dr. Shen Chong and Jibu Stephen for MPMS measurements. J. Leveneur is acknowledged for fruitful discussion of the XANES and MPMS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murmu, P.P., Kennedy, J., Ruck, B.J. et al. Effect of annealing on the structural, electrical and magnetic properties of Gd-implanted ZnO thin films. J Mater Sci 47, 1119–1126 (2012). https://doi.org/10.1007/s10853-011-5883-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5883-z

Keywords

Navigation