Skip to main content
Log in

Atomic structure and reactivity of ferromagnetic Fe deposited on Si(001)

  • E-MRS MACAN
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study presents a correlated study of structural, reactivity, and magnetic properties of ultrathin Fe layers grown on Si(001) by molecular beam epitaxy in ultrahigh vacuum. The interface reactivity is characterized by Auger electron spectroscopy. The surface structure is characterized by low electron energy diffraction with spot profile analysis. The magnetism of the synthesized layers is investigated by magneto-optical Kerr effect. At room temperature, metal Fe layers with poor long-range order are synthesized; these layers are ferromagnetic with an extremely low coercitive field (below 1 Oe). The reactivity with Si is low in this case, with formation of an interface layer of about 8 Å Fe equivalent thickness with about 7 at.% Si diffused. Samples synthesized at higher temperatures (500 °C) exhibit better long-range order, though the Fe reactivity with Si is higher and leads to the formation of an interface compound whose approximate stoichiometry is very close to Fe3Si. Once this compound is formed (for an equivalent Fe thickness of about 14 monolayers), disordered metal Fe islands are developing with subsequent Fe deposition, which contain also about 8 at.% Si diffused. These structures exhibit a much lower ferrimagnetism, with saturation magnetization about one order of magnitude lower than in the case of the room temperature synthesis. In this case of high temperature synthesis, two phases are observed, a ferrimagnetic one and a superparamagnetic one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Avila J, Mascaraque A, Teodorescu C, Michel EG, Asensio MC (1997) Surf Sci 856:377

    Google Scholar 

  2. Mascaraque A, Avila J, Teodorescu CM, Asensio MC, Michel EG (1997) Phys Rev B 5:R7315

    Article  Google Scholar 

  3. Makita Y, Nakayama Y, Fukuzawa Y, Wang SN, Otogawa N, Suzuki Y, Liu ZX, Osamura M, Ootsuka T, Mise T, Tanoue H (2004) Thin Solid Films 461:202

    Article  CAS  Google Scholar 

  4. Konuma K, Vrijmoeth J, Zagwijn PM, Frenken JWM, Vlieg E, van der Veen JF (1993) J Appl Phys 73:1104

    Article  CAS  Google Scholar 

  5. Martin MG, Avila J, Gruyters M, Teodorescu C, Dumas P, Chabal YJ, Asensio MC (1998) Appl Surf Sci 123–124:156

    Article  Google Scholar 

  6. Pronin II, Gomoyunova MV, Malygin DE, Vyalikh DV, Dedkov YS, Molodsov SL (2008) J Appl Phys 104:104914

    Article  Google Scholar 

  7. Hamaya K, Ueda K, Kishi Y, Ando Y, Sadoh T, Miyao M (2008) Appl Phys Lett 93:132117

    Article  Google Scholar 

  8. Alvarez J, Hinarejos JJ, Michel EG, Castro GR, Miranda R (1992) Phys Rev B 45:14042

    Article  CAS  Google Scholar 

  9. Kinoshita K, Imaizumi R, Nakajima K, Suzuki M, Kimura K (2004) Thin Solid Films 461:131

    Article  CAS  Google Scholar 

  10. Itakura M, Norizumi D, Ohta T, Tomokiyo Y, Kuwano N (2004) Thin Solid Films 461:120

    Article  CAS  Google Scholar 

  11. Shoji F, Shimoji H, Makihara Y, Naitoh M (2004) Thin Solid Films 461:116

    Article  CAS  Google Scholar 

  12. Cougo dos Santos M, Geshev J, Schmidt JE, Teixeira SR, Pereira LG (2000) Phys Rev B 61:1311

    Article  CAS  Google Scholar 

  13. Ghebouli B, Chérif SM, Ayadi A, Helifa B, Boudissa M (2007) J Magn Magn Mater 312:194

    Article  CAS  Google Scholar 

  14. Suzuki M, Kinoshita K, Jomori S, Harada H, Nakajima K, Kimura K (2007) Thin Solid Films 515:8281

    Article  CAS  Google Scholar 

  15. Diaz J, Valvidares SM, Morales R, Alameda JM (2002) J Magn Magn Mater 242:166

    Article  Google Scholar 

  16. Gallego JM, García JM, Alvarez J, Miranda R (1992) Phys Rev B 46:13339

    Article  CAS  Google Scholar 

  17. Bertoncini P, Wetzel P, Berling D, Gewinner G, Bouillet CU, Bohnes VP (1999) Phys Rev B 60:11123

    Article  CAS  Google Scholar 

  18. Bertoncini P, Wetzel P, Berling D, Mehdaoui A, Loegel B, Gewinner G, Poinsot R, Bohnes VP (2001) J Magn Magn Mater 237:191

    Article  CAS  Google Scholar 

  19. Zavaliche F, Wulfhekel W, Xu H, Kirschner J (2000) J Appl Phys 88:5289

    Article  CAS  Google Scholar 

  20. Pronin II, Gomoyunova MV, Malygin DE, Vyalikh DV, Dedkov YS, Molodsov SL (2009) Appl Phys A 94:467

    Article  CAS  Google Scholar 

  21. Kläsges R, Carbone C, Eberhardt W, Pampuch C, Rader O, Kachel T, Gudat W (1997) Phys Rev B 56:10801

    Article  Google Scholar 

  22. Lee JI, Kim IG (2004) J Magn Magn Mater 272:1186

    Article  Google Scholar 

  23. Wu H, Kratzer P, Scheffler M (2005) Phys Rev B 72:144425

    Article  Google Scholar 

  24. Gheorghe NG, Lungu GA, Popescu RM, Popescu DG, Teodorescu CM (2011) Optoel Adv Mater Rapid Commun 5:499

    CAS  Google Scholar 

  25. Gheorghe NG, Lungu GA, Costescu RM, Teodorescu CM (2011) Phys Stat Sol B 248:1919

    Article  CAS  Google Scholar 

  26. Henzler M (1993) Surf Sci 298:369

    Article  CAS  Google Scholar 

  27. Teodorescu CM, Esteva JM, Karnatak RC, El Afif A (1994) Nucl Instrum Meth Phys Res A 345:141

    Article  CAS  Google Scholar 

  28. Hüfner S (2003) Photoelectron spectroscopy. Principles and applications, 3rd edn. Springer, Berlin

    Google Scholar 

  29. Teodorescu CM, Luca D (2006) Surf Sci 600:4200

    Article  CAS  Google Scholar 

  30. Teodorescu CM, Chevrier F, Brochier R, Ilakovac V, Heckmann O, Lechevalier L, Hricovini K (2002) Eur Phys J B 28:305

    Article  CAS  Google Scholar 

  31. Kuncser V, Keune W, von Hörsten U, Schinteie G (2010) J Optoelectr Adv Mater 12:1385

    CAS  Google Scholar 

  32. Teodorescu C, Chevrier F, Ilakovac V, Heckmann O, Lechevalier L, Brochier R, Johnson RL, Hricovini K (2000) Appl Surf Sci 166:137

    Article  CAS  Google Scholar 

  33. Teodorescu CM, Chevrier F, Brochier R, Richter C, Heckmann O, Ilakovac V, De Padova P, Hricovini K (2001) Surf Sci 482–485:1004

    Article  Google Scholar 

Download references

Acknowledgement

This work was funded by the UEFISCDI PCCE ID_76/2009 and by the IFA-CEA C1-08/2010 Projects. One of the authors (RMC) acknowledges the UEFISCDI re-integration grant RP11/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian M. Teodorescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gheorghe, N.G., Husanu, M.A., Lungu, G.A. et al. Atomic structure and reactivity of ferromagnetic Fe deposited on Si(001). J Mater Sci 47, 1614–1620 (2012). https://doi.org/10.1007/s10853-011-5963-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5963-0

Keywords

Navigation