Skip to main content
Log in

MgB2 with addition of Sb2O3 obtained by spark plasma sintering technique

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Superconducting bulks of MgB2 with addition of Sb2O3 and Sb with different stoichiometric compositions ((MgB2) + (Sb2O3) x , x = 0.0025, 0.005, 0.015, and (MgB2) + (Sb)y, y = 0.01) were obtained by the Spark Plasma Sintering (SPS) technique. All added samples have high density, above 95% and critical temperature, T c, of 38.1–38.6 K. This result and XRD data suggest that Sb does not enter the lattice of MgB2. Impurity phases are Mg3Sb2, MgO, and MgB4. The optimum addition is Sb2O3 for x = 0.005. This sample shows the critical current density, J c(5 K, 0 T) = 4 × 105 A/cm2 and J c(5 K, 7 T) = 6 × 102 A/cm2, while the irreversibility field, H irr (5 K, 100 A/cm2) = 8.23 T. Indicated values of J c and H irr are higher than for the pristine sample. The mechanism of J c and H irr increase in the Sb2O3 added samples is complex and composed of opposite effects most probably involving morphology elements, the presence of nano metric MgB4 and the indirect influence of oxygen or oxygen and Sb. Crystallite size of MgB2 is decreasing when Sb-based additions are introduced and the effect is stronger for the Sb-metal addition. The sample with Sb-metal addition does not improve J c and H irr when compared with pristine sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nagamatsu N, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Nature 410:63

    Article  CAS  Google Scholar 

  2. Dou SX, Soltanian S, Horvat J, Wang XL, Zhou SH, Ionescu M, Liu HK, Munroe P, Tomsic M (2002) Appl Phys Lett 81:3419

    Article  CAS  Google Scholar 

  3. Miu L, Aldica G, Badica P, Ivan I, Miu D, Jakob G (2010) Supercond Sci Technol 23:095002

    Article  Google Scholar 

  4. Larbalestier DC, Cooley LD, Rikel MO, Polyanskii AA, Jiang J, Patnaik S, Cai XY, Feldmann DM, Gurevich A, Squitieri AA, Naus MT, Eom CB, Hellstrom EE, Cava RJ, Regan KA, Rogado N, Hayward MA, He T, Slusky JS, Khalifah P, Inumaru K, Haas M (2001) Nature 410:6825

    Article  Google Scholar 

  5. Groza JR, Zavaliangos A (2000) Mater Sci Eng A 287:2

    Google Scholar 

  6. Marks GW, Monson LA (1955) Ind Eng Chem 47:1611

    Article  CAS  Google Scholar 

  7. Lutterotti L (2010) Nucl Instrum Methods Phys Res B 268:334

    Article  CAS  Google Scholar 

  8. Dancer CEJ, Mikheenko P, Bevan A, Abell JS, Todd RI, Grovenor CRM (2009) J Eur Ceram Soc 29:1817

    Article  CAS  Google Scholar 

  9. Williamson GK, Hall W (1953) Acta Metall 1:22

    Article  CAS  Google Scholar 

  10. Bean CP (1962) Phys Rev Lett 8:250

    Article  Google Scholar 

  11. Gyorgy EM, van Dover RB, Jackson KA, Schneemeyer LF, Waszczak JV (1989) Appl Phys Lett 55:283

    Article  CAS  Google Scholar 

  12. Schmidt J, Schnelle W, Grin Y, Kniep R (2003) Solid State Sci 5:535

    Article  CAS  Google Scholar 

  13. Carrington A, Manzano F (2003) Physica C 385:205

    Article  CAS  Google Scholar 

  14. Serquis A, Liao XZ, Zhu YT, Coulter JY, Huang JY, Willis JO, Peterson DE, Mueller FM, Moreno NO, Thompson JD, Nesterenko VF, Indrakanti SS (2002) J Appl Phys 92:351

    Article  CAS  Google Scholar 

  15. Prikhna T, Gawalek W, Savchuk Y, Tkach V, Danilenko N, Wendt M, Dellith J, Weber H, Eisterer M, Moshchil V, Sergienko N, Kozyrev A, Nagorny P, Shapovalov A, Melnikov V, Dub S, Litzkendorf D, Habisreuther T, Schmidt C, Mamalis A, Sokolovsky V, Sverdun V, Karau F, Starostina A (2010) Physica C 470:19

    Article  Google Scholar 

  16. Klie RF, Idrobo JC, Browning ND, Serquis A, Zhu YT, Liao XZ, Mueller FM (2002) Appl Phys Lett 80:21

    Article  Google Scholar 

  17. Mori Z, Doi T, Hakuraku Y, Kitaguchi H (2006) Physica C 445–448:880

    Article  Google Scholar 

  18. Kovac P, Hugek I, Meligek T, Grivel JC, Pachla W, Strbik V, Diduszko R, Homeyer J, Andersen NH (2004) Supercond Sci Technol 17:L41

    Article  CAS  Google Scholar 

  19. Prikhna TA, Gawalek W, Savchuk YM, Habisreuther T, Wendt M, Sergienko NV, Moshchil VE, Nagorny P, Schmidt C, Dellith J, Dittrich U, Litzkendorf D, Melnikov VS, Sverdun VB (2007) Supercond Sci Technol 20:S257

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Study was performed with financial support from PCCE 9/2010, Romania. Authors thank Dr. I Pasuk for help with XRD data analysis by MAUD software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Badica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burdusel, M., Aldica, G., Popa, S. et al. MgB2 with addition of Sb2O3 obtained by spark plasma sintering technique. J Mater Sci 47, 3828–3836 (2012). https://doi.org/10.1007/s10853-011-6238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6238-5

Keywords

Navigation