Skip to main content
Log in

TiO2–Cu photocatalysts: a study on the long- and short-range chemical environment of the dopant

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the short- and long-range chemical environments of Cu dopant in TiO2 photocatalyst have been investigated. The Cu-doped and undoped TiO2 specimens were prepared by the sol–gel approach employing CuSO4·5H2O and Ti(O-iPr)4 precursors and subjecting the dried gels to thermal treatment at 400 and 500 °C. The photocatalytic activity, investigated by methylene blue degradation under sunlight irradiation, showed a significantly higher efficiency of Cu-doped samples than that of pure TiO2. The X-ray diffraction results showed the presence of anatase phase for samples prepared at 400 and 500 °C. No crystalline CuSO4 phase was detected below 500 °C. It was also found that doping decreases the crystallite size in the (004) and (101) directions. Infrared spectroscopy results indicated that the chemical environment of sulfate changes as a function of thermal treatment, and UV–vis spectra showed that the band gap decreases with thermal treatment and Cu doping, showing the lowest value for the 400 °C sample. X-ray absorption fine structure measurements and analysis refinements revealed that even after thermal treatment and photocatalytic assays, the Cu2+ local order is similar to that of CuSO4, containing, however, oxygen vacancies. X-ray photoelectron spectroscopy data, limited to the near surface region of the catalyst, evidenced, besides CuSO4, the presence of Cu1+ and CuO phases, indicating the active role of Cu in the TiO2 lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Al-Kdasi A, Iris A, Saed K, Guan CT (2004) Glob Nest Int J 6:222

    Google Scholar 

  2. Di Paola A, Garcia-Lopez E, Ikeda S, Marci G, Ohtani B, Palmisano L (2002) Catal Today 75:87

    Article  Google Scholar 

  3. Srinivas B, Shubhamangala B, Lalitha K, Reddy PAK, Kumari VD, Subrahmanyam M et al (2011) Photochem Photobiol 87:995

    Article  CAS  Google Scholar 

  4. Tseng IH, Wu JCS, Chou HY (2004) J Catal 221:432

    Article  CAS  Google Scholar 

  5. Gurman JS (1982) J Mater Sci 17:1541. doi:10.1007/BF00540779

    Article  CAS  Google Scholar 

  6. Xiong L, Yang F, Yan L, Yan N, Yang X, Qiu M et al (2011) J Phys Chem Solids 72:1104

    Article  CAS  Google Scholar 

  7. Carvalho HWP, Batista APL, Hammer P, Ramalho TC (2010) J Hazard Mater 184:273

    Article  CAS  Google Scholar 

  8. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537

    Article  CAS  Google Scholar 

  9. Madarasz J, Braileanu A, Pokol G (2008) J Anal Appl Pyrolysis 82:292

    Article  CAS  Google Scholar 

  10. Collins LW, Gibson EK, Wendlandt WW (1974) Thermochim Acta 9:15

    Article  CAS  Google Scholar 

  11. Rao BR (1961) Acta Crystallogr 14:321

    Article  CAS  Google Scholar 

  12. López-Ayala S, Rincón ME, Pfeiffer H (2009) J Mater Sci 44:4162. doi:10.1007/s10853-009-3617-2

    Article  Google Scholar 

  13. Colon G, Maicu M, Hidalgo MC, Navio JA (2006) Appl Catal B 67:41

    Article  CAS  Google Scholar 

  14. Moon J, Takagi H, Fujishiro Y, Awano M (2001) J Mater Sci 36:949. doi:10.1023/A:1004819706292

    Article  CAS  Google Scholar 

  15. Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds, 4th edn. Wiley, New York, p 232

    Google Scholar 

  16. Liao LF, Lien CF, Lin JL (2001) Phys Chem Chem Phys 3:3831

    Article  CAS  Google Scholar 

  17. Joyner RW (1980) Chem Phys Lett 72:162

    Article  CAS  Google Scholar 

  18. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy Chastain J, editor. Physical Electronics Division, Eden Prairie, Perkin-Elmer Corporation, Minnesota

    Google Scholar 

  19. Bueno PR, Tararan R, Parra R, Joanni E, Ramirez MA, Ribeiro WC et al (2009) J Phys D 42:050404

    Article  Google Scholar 

  20. Xin B, Wang P, Ding D, Liu J, Ren Z, Fu H (2008) Appl Surf Sci 254:2569

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to LNLS by the XAS beam time under the Project D04B-XAFS1-10796, and also to SOLEIL synchrotron for XRD and FTIR facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hudson W. P. Carvalho or Teodorico C. Ramalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, H.W.P., Rocha, M.V.J., Hammer, P. et al. TiO2–Cu photocatalysts: a study on the long- and short-range chemical environment of the dopant. J Mater Sci 48, 3904–3912 (2013). https://doi.org/10.1007/s10853-013-7192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7192-1

Keywords

Navigation