Skip to main content
Log in

The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: a 57Fe Mössbauer spectroscopy study

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The behavior of the iron present in two volcanic ashes was investigated during geopolymer synthesis using sodium hydroxide as the sole alkali activator. XRD, SEM, and room-temperature 57Fe Mössbauer spectroscopy were used to monitor the behavior of the iron during the synthesis reaction. Geopolymers with very good compressive strengths were formed, especially with the finer ash, in which the iron is present in the crystalline minerals ferroan forsterite and augite. Mössbauer spectroscopy identified the ferrous sites in these minerals, plus a ferric site, probably located in an X-ray amorphous phase. The ferroan forsterite in the original ashes did not react with NaOH, but a substantial proportion of the augite reacted to form new ferric sites with parameters similar to distorted tetrahedral or 5-coordinated environments, suggesting the possible incorporation of ferric iron in the tetrahedral network of the geopolymer product. These results indicate that iron is not necessarily deleterious to geopolymer formation, as has sometimes been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barbosa VFF, MacKenzie KJD, Thaumaturgo C (2000) Int J Inorg Mater 2:309

    Article  CAS  Google Scholar 

  2. Rahier H, Van Mele B, Wastiels J, (1996) J Mater Sci 31:80. doi:10.1007/BF00355129

    Article  CAS  Google Scholar 

  3. Duxson P, Provis JL, Lukey GC, van Deventer JSJ (2007) Cem Concr Res 37:1590

    Article  CAS  Google Scholar 

  4. Davidovits J (1991) J Therm Anal 37:1633

    Article  CAS  Google Scholar 

  5. O’Connor SJ, MacKenzie KJD (2010) J Mater Sci 45:3707. doi:10.1007/s10853-010-4383-x

    Article  Google Scholar 

  6. MacKenzie KJD, Rahner N, Smith ME, Wong A (2010) J Mater Sci 45:999. doi:10.1007/s10853-009-4031-5

    Article  CAS  Google Scholar 

  7. Rahier H, Wastiels J, Biesemans M, Willlem R, Van Assche G, Van Mele B (2007) J Mater Sci 42:2982. doi:10.1007/s10853-006-0568-8

    Article  CAS  Google Scholar 

  8. Kamseu E, Bignozzi MC, Melo UC, Leonelli C, Sglavo VM (2013) Constr Build Mater 38:1135

    Article  Google Scholar 

  9. Tsai Y-L, Hanna JV, Lee Y-L, Smith ME, Chan JCC (2010) J Solid State Chem 183:3017

    Article  CAS  Google Scholar 

  10. Brew DRM, MacKenzie KJD (2007) J Mater Sci 42:3990. doi:10.1007/s10853-006-0376-1

    Article  CAS  Google Scholar 

  11. Waychunas GA, Kim CS, Banfield JF (2005) J Nanopart Res 7:409

    Article  CAS  Google Scholar 

  12. Diaz EI, Allouche EN, Eklund S (2010) Fuel 89:992

    Article  CAS  Google Scholar 

  13. Lemougna PN, MacKenzie KJD, Melo UFC (2011) Ceram Int 37:3011

    Article  CAS  Google Scholar 

  14. Tchakoute Kouamo H, Mbey JA, Elimbi A, Kenne Diffo BB, Njopwouo D (2013) Ceram Int 39:1613

    Article  CAS  Google Scholar 

  15. Lloyd RR, Provis JL, van Deventer JSJ (2009) J Mater Sci 44(2):608. doi:10.1007/s10853-008-3077-0

    Article  CAS  Google Scholar 

  16. Provis JL, Rose V, Bernal SA, van Deventer JSJ (2009) Langmuir 25(19):11897

    Article  CAS  Google Scholar 

  17. van Deventer JSJ, Provis JL, Duxson P, Lukey GC (2007) J Hazard Mater A139:506

    Article  Google Scholar 

  18. Perera DS, Cashion JD, Blackford MG, Zhaoming Z, Vance ER (2007) J Eur Ceram Soc 27:2697

    Article  CAS  Google Scholar 

  19. Wagh AS, Douse VE (1991) J Mater Res 6:1094

    Article  CAS  Google Scholar 

  20. Kamseu E, Leonelli C, Perera DS, Melo UC, Lemougna PN (2009) Interceram 58:136

    CAS  Google Scholar 

  21. Bell JL, Kriven WM (2010) In: Singh D, Kriven WM (eds) Mechanical properties and performance of engineering ceramics and composites IV. Wiley, Hoboken, pp 301–312

    Google Scholar 

  22. Deer WA, Howie RA, Zussman J (1978) Rock-forming minerals, 2nd Ed., Volume 2A. Longman, London

    Google Scholar 

  23. Duxson P, Mallicoat SW, Lukey GC, Kriven WM, van Deventer JSJ (2007) Colloid Surf A Physicochem Eng Asp 292:8

    Article  CAS  Google Scholar 

  24. Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy, Ch 10. Chapman and Hall, London

    Book  Google Scholar 

  25. Bancroft MG, Maddock AG, Burns RG (1967) Geochim Cosmochim Acta 31:2219

    Article  CAS  Google Scholar 

  26. Cheong S, Ferguson P, Hermans DA, Jameson GNL, Prabkabar S, Herman DA, Tilley RD (2012) Chempluschem 77:135

    Article  CAS  Google Scholar 

  27. Roca AG, Marco JF, Morales MD, Serna CJ (2007) J Phys Chem C 111:18577

    Article  CAS  Google Scholar 

  28. Rossano S, Behrens H, Wilke M (2008) Phys Chem Mineral 35:77

    Article  CAS  Google Scholar 

  29. Mysen BO (2006) Geochim Cosmochim Acta 70:2337

    Article  CAS  Google Scholar 

  30. Spiering B, Seifert FA (1985) Contrib Miner Petrol 90:63

    Article  CAS  Google Scholar 

  31. Bancroft GM, Burns RG, Stone AJ (l968) Geochim Cosmochim Acta 32: 547

  32. Van Cromphaut C, de Resende VG, De Grave E, Van Alboom A, Vandenberghe RE, Klingelhöfer G (2007) Geochim Cosmochim Acta 71:4814

    Article  Google Scholar 

  33. Akasaka M (1983) Phys Chem Mineral 9:205

    Article  CAS  Google Scholar 

  34. Thompson A, Rancourt DG, Chadwick OA, Chorover J (2011) Geochim Cosmochim Acta 75:119

    Article  CAS  Google Scholar 

  35. MacKenzie KJD, Smith ME (2002) Multinuclear solid state NMR of inorganic materials. Pergamon-Elsevier, Oxford

    Google Scholar 

  36. Provis JL (2006) Modelling the Formation of Geopolymers, PhD Thesis, University of Melbourne, Australia

  37. Daux V, Guy C, Advocat T, Crovisier J-L, Stille P (1997) Chem Geol 142:109

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. D. MacKenzie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemougna, P.N., MacKenzie, K.J.D., Jameson, G.N.L. et al. The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: a 57Fe Mössbauer spectroscopy study. J Mater Sci 48, 5280–5286 (2013). https://doi.org/10.1007/s10853-013-7319-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7319-4

Keywords

Navigation