Skip to main content
Log in

Investigation of the effect of addition of calcium stearate on the properties of low-density polyethylene/poly(ε-caprolactone) blends

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Low-density polyethylene (LDPE) was blended with poly(ε-caprolactone) (PCL), prepared in proportions of 75/25, 50/50, and 25/75 (LDPE/PCL, wt/wt%). The effect of the addition of calcium stearate (CaSt) of these polymers was assessed by melting flow index, differential scanning calorimetry, tensile test, scanning electron microscopy (SEM), biodegradation in simulated soil with calcium determination, and enzymatic degradation. The addition of CaSt reduced the MFI of the PCL and of the 75/25 blend. The incorporation of 25 % of PCL slightly increased the T m of LDPE. The tensile strength had no significant changes with the addition of CaSt and the polymers showed that they are incompatible according to this property. SEM showed poor interfacial interaction between PCL and LDPE, as well as that they are immiscible, and showed no significant changes on the morphology of the materials with the addition of CaSt. The results show that polymer samples after biodegradation in simulated soil present more calcium content than initial samples polymer. The soil analysis shows that the soil that contains the polymers submitted to thermal aging show smaller calcium content than the samples that were not aged. Lipase enzyme reinforced its specificity over PCL, and the addition of CaSt reduced the degradation of PCL and the 75/25 PCL/LDPE blend, however, it increased the rate of degradation of 50/50 and 25/75 blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar AA, Karthick K, Arumugam KP (2011) Properties of biodegradable polymers and degradation for sustainable development. Int J Chem Eng Appl 3(2):164–167

    Google Scholar 

  2. Rosa DS, Sarti J, Mei LHI, Mendes Filho M, Silveira SA (2000) A study of parameters interfering in oxidative induction time (OIT) results obtained by differential scanning calorimetry in polyolefin. Polym Test 19:523–531

    Article  CAS  Google Scholar 

  3. Valle MLM, Guimarães MJOC, Sampaio CMS (2004) Degradação de poliolefinas utilizando catalisadores zeolíticos. Polímeros: Ciência e Tecnol 14(1):17–21

    Article  CAS  Google Scholar 

  4. Wiles DM, Scott G (2006) Polyolefins with controlled environmental degradability. Polym Degrad Stab 91(7):1581–1592

    Article  CAS  Google Scholar 

  5. Chiellini E, Corti A, D’Antone S, Baciu R (2006) Oxo-biodegradable carbon backbone polymers—oxidative degradation of polyethylene under accelerated test conditions. Polym Degrad Stab 91(11):2739–2747

    Article  CAS  Google Scholar 

  6. Ojumu TV, Yu J, Solomon BO (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymers. Afr J Biotechnol 3(1):18–24

    CAS  Google Scholar 

  7. Rosa DS, Franco BLM, Calil MR (2001) Biodegradabilidade e propriedades mecânicas de novas misturas poliméricas. Polímeros: Ciência e Tecnol 11(2):82–88

    Article  CAS  Google Scholar 

  8. Martin O, Avérous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219

    Article  CAS  Google Scholar 

  9. Corradini E, Mattoso LH, Guedes CGF, Rosa DS (2004) Mechanical, thermal and morphological properties of poly(ε-caprolactone)/zein blends. Polym Adv Technol 93(3):1230–1235

    Google Scholar 

  10. Lotto NT, Calil MR, Guedes CGF, Rosa DS (2004) The effect of temperature on the biodegradation test. Mater Sci Eng C 24:659–662

    Article  Google Scholar 

  11. Ramis X, Cadenato A, Salla JM, Morancho JM, Vallés A, Contat L, Ribes A (2004) Thermal degradation of polypropylene/starch-based materials with enhanced biodegradability. Polym Degrad Stab 86:483–491

    Article  CAS  Google Scholar 

  12. Zuchowska D, Hlavatá D, Steller R, Adamiak W, Meissner W (1999) Physical structure of polyolefin–starch blends after ageing. Polym Degrad Stab 64(2):339–346

    Article  CAS  Google Scholar 

  13. Albertsson A, Karlsson S (1994) Chemistry and biochemistry of polymer biodegradation. In: Giffin GJL (ed) Chemistry and technology of biodegradable polymers. Chapman & Hall, New York, pp 7–17

    Chapter  Google Scholar 

  14. Roy PK, Surekha P, Rajagopal C, Choudhary V (2006) Accelerated aging of LDPE films containing cobalt complexes as prooxidants. Polym Degrad Stab 91(8):1791–1799

    Article  CAS  Google Scholar 

  15. Koutny M, Lemaire J, Delort AM (2006) Biodegradation of polyethylene films with prooxidant additives. Chemosphere 64(8):1243–1252

    Article  PubMed  CAS  Google Scholar 

  16. Trongtorsak K, Supaphol P, Tantayanon S (2004) Effect of calcium stearate and pimelic acid addition on mechanical properties of heterophasic isotactic polypropylene/ethylene–propylene rubber blend. Polym Test 23:533–539

    Article  CAS  Google Scholar 

  17. Iuchowska D, Steller R, Meissner W (1998) Structure and properties of degradable polyolefin–starch blends. Polym Degrad Stab 60:471–480

    Article  Google Scholar 

  18. Gray JE, Luan B (2002) Protective coatings on magnesium and its alloys—a critical review. J Alloys Compd 2(1):88–113

    Article  Google Scholar 

  19. Roy PK, Surekha P, Rajagopal C, Choudhary V (2006) Effect of cobalt carboxylates on the photo-oxidative degradation of low-density polyethylene. Part-I. Polym Degrad Stab 91:1980–1988

    Article  CAS  Google Scholar 

  20. Markarian J (2006) Process modifiers improve output and cost competitiveness. Plast Addit Compd 8(5):20–23

    Article  Google Scholar 

  21. Luzuriaga S, Kovarova J, Forteln I (2006) Degradation of pre-aged polymers exposed to simulated recycling: properties and thermal stability. Polym Degrad Stab 45:97–103

    Google Scholar 

  22. Carocho M, Ferreira ICFR (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25

    Article  PubMed  CAS  Google Scholar 

  23. Ammala A, Bateman S, Dean K, Petinakis E, Sangwan P, Wong S, Yuan Q, Yu L, Patrick C, Leong KH (2011) An overview of degradable and biodegradable polyolefin. Prog Polym Sci 36:1015–1049

    Article  CAS  Google Scholar 

  24. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(1):52–68

    Article  MathSciNet  CAS  Google Scholar 

  25. Osman MA, Atallah A, Suter UW (2004) Influence of excessive filler coating on the tensile properties of LDPE–calcium carbonate composites. Polymer 45(4):1177–1183

    Article  CAS  Google Scholar 

  26. Edirisinghe MJ (1991) The effect of processing additives on the properties of a ceramic–polymer formulation. Ceram Int 17(2):89–96

    Article  CAS  Google Scholar 

  27. Lodha P, Netravali AN (2005) Thermal and mechanical properties of environment-friendly ‘green’ plastics from stearic acid modified-soy protein isolate. Ind Crop Prod 21(1):49–64

    Article  CAS  Google Scholar 

  28. Li JX, Cheung WL (1999) Conversion of growth and recrystallisation of β-phase in doped iPP. Polymer 40(8):2085–2088

    Article  CAS  Google Scholar 

  29. Dean DD, Lohmann CH, Sylvia VL, Köster G, Liu Y, Schwartz Z, Boyan BD (2001) Effect of polymer molecular weight and addition of calcium stearate o response of MG63 osteoblast-like cells to UHMWPE particles. J Orthop Res 19(2):179–186

    Article  PubMed  CAS  Google Scholar 

  30. Osman MA, Atallah A (2004) High-density polyethylene micro- and nanocomposites: effect of particle shape, size and surface treatment on polymer crystallinity and gas permeability. Macromol Rapid Commun 25(17):1540–1544

    Article  CAS  Google Scholar 

  31. American Society for Testing and Materials (ASTM) (1999) Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. ASTM D 1238/99. West Conshohocken, PA

  32. Brunner BP (1999) Como o processamento altera as propriedades dos materiais termoplásticos. Plástico Industrial, 30 novembro

  33. Fredriksen O (2003) Calcium stearate–stearic acid as lubricants for rigid poly(vinyl chloride) (PVC). Capillary rheometer measurements and extrusion properties. J Appl Polym Sci 13(1):69–80

    Article  Google Scholar 

  34. Billingham NC, Chiellini E, Corti A, Baciu R, Wiles D (2008) Environmentally degradable plastics based on oxo-biodegradation of conventional polyolefins. Available in http://www.oxobio.org. Accessed 17 July 2008

  35. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpes MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474

    Article  CAS  Google Scholar 

  36. Raven PH, Evert RF, Eichhorn SE (1996) Biologia vegetal, 5th edn. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

Download references

Acknowledgements

The authors thank Union Chemical Carbide Ltd. (Cubatão, SP, Brazil) for supplying the PCL and LDPE; and for Dacarto Benvic Ltda. (Osasco, SP, Brazil) for supplying calcium stearate. This work was supported by CNPq. The SEM work was done with the JSM-5900LV microscope in the Laboratório de Microscopia Eletrônica, Laboratório Nacional de Luz Síncrotron (LME/LNLS), Campinas, SP, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maira de Lourdes Rezende.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lourdes Rezende, M., dos Santos Rosa, D., das Graças Fassina Guedes, C. et al. Investigation of the effect of addition of calcium stearate on the properties of low-density polyethylene/poly(ε-caprolactone) blends. J Mater Sci 49, 1544–1555 (2014). https://doi.org/10.1007/s10853-013-7837-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7837-0

Keywords

Navigation