Skip to main content
Log in

Schottky barrier versus surface ferroelectric depolarization at Cu/Pb(Zr, Ti)O3 interfaces

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The band bending at Cu/PZT(001) interfaces is investigated by X-ray photoelectron spectroscopy (XPS) for a PZT(001) layer which exhibits initial outwards ferroelectric polarization. Two competitive processes are identified: (a) formation of the Schottky barrier between the ferroelectric and unconnected Cu islands, and (b) coalescence of the Cu islands, realisation of an electrical contact to the ground of the system, inducing the apparent loss of the component of the ferroelectric polarization perpendicular to the sample surface, at least as it manifests in band bending. Three mechanisms are proposed to explain this loss of band bending when a full metal layer connected to ground is formed on the surface: (i) over-compensation of depolarization field in the sub-surface region, (ii) formation of domains with in-plane orientation of the polarization vector and (iii) loss of polarization in the near-surface layers of the ferroelectric due to electrons provided by the metal. These result in a non-monotonous variation of binding energies with the amount of Cu deposited. High resolution transmission electron microscopy and piezoresponse force microscopy confirmed these hypotheses. The XPS data allowed also to derive the surface PZT composition, its evolution with the deposition of copper and the formation of surface compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang Y, Hu Y, Lu Y (2008) Sensitivity of PZT impedance sensors for damage detection of concrete structures. Sensors 8:327

    Article  Google Scholar 

  2. Bruchhaus R, Pitzer D, Schreiter M, Wersing W (1999) Optimized PZT thin films for pyroelectric IR detector arrays. J Electroceram 3:151

    Article  Google Scholar 

  3. Scott JF (2000) Ferroelectric memories. Springer, Berlin

    Book  Google Scholar 

  4. Pintilie L, Alexe M (2005) Metal-ferroelectric-metal heterostructures with Schottky contacts. I. Influence of the ferroelectric properties. J Appl Phys 98:124103

    Article  Google Scholar 

  5. Apostol NG, Stoflea LE, Lungu GA, Tache CA, Pintilie L, Teodorescu CM (2013) Band bending at free Pb(Zr, Ti)O3 surfaces analyzed by X-ray photoelectron spectroscopy. Mater Sci Eng B 178:1317

    Article  Google Scholar 

  6. Sezen H, Suzer S (2013) XPS for chemical- and charge-sensitive analyses. Thin Solid Films 534:1

    Article  Google Scholar 

  7. Copuroglu M, Sezen H, Opila RL, Suzer S (2013) Band-bending at buried SiO2/Si interface as probed by XPS. ACS Appl Mater Interfaces 5:5875

    Article  Google Scholar 

  8. Hüfner S (2003) Photoelectron spectroscopy: principles and applications. Springer, Berlin

    Book  Google Scholar 

  9. Chen F, Schafranek R, Wu W, Klein A (2011) Reduction-induced Fermi level pinning at the interfaces between Pb(Zr, Ti)O3 and Pt, Cu and Ag metal electrodes. J Phys D 44:255301

    Article  Google Scholar 

  10. Popescu DG, Husanu MA (2013) Au–Ge bonding on a uniformly Au-covered Ge(001) surface. Phys Status Solidi RRL 7:274

    Article  Google Scholar 

  11. Popescu DG, Husanu MA (2014) Epitaxial growth of Au on Ge(001) surface: photoelectron spectroscopy measurements and first-principles calculations. Thin Solid Films. doi:10.1016/j.tsf.2013.12.049

    Google Scholar 

  12. Vrejoiu I, Le Rhun G, Pintilie L, Hesse D, Alexe M, Goesele U (2006) Intrinsic ferroelectric properties of strained tetragonal PbZr0.2Ti0.8O3 obtained on layer-by-layer grown, defect-free single-crystalline films. Adv Mater 18:1657

    Article  Google Scholar 

  13. Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797

    Article  Google Scholar 

  14. Vrejoiu I, Alexe M, Hesse D, Gösele U (2008) Functional perovskites—from epitaxial films to nanostructured arrays. Adv Funct Mater 18:3892

    Article  Google Scholar 

  15. Apostol NG, Stoflea LE, Lungu GA, Chirila C, Trupina V, Negrea RF, Ghica C, Pintilie L, Teodorescu CM (2013) Charge transfer and band bending at Au/Pb(Zr0.2Ti0.8)O3 interfaces investigated by photoelectron spectroscopy. Appl Surf Sci 273:415

    Article  Google Scholar 

  16. Apostol NG, Stoflea LE, Lungu GA, Tanase LC, Chirila C, Frunza L, Pintilie L, Teodorescu CM (2013) Band bending in Au/Pb(Zr, Ti)O3 investigated by X-ray photoelectron spectroscopy: dependence on the initial state of the film. Thin Solid Films 545:13

    Article  Google Scholar 

  17. Hamedi LH, Guilloux-Viry M, Perrin A, Cherkani MH (1998) On the epitaxial growth of PZT films by pulsed laser deposition. Ann Chim Sci Matér 23:377

    Article  Google Scholar 

  18. Hamedi LH, Guilloux-Viry M, Perrin A, Garry G (1999) Heteroepitaxial growth of PZT thin films on LiF substrate by pulsed laser deposition. Thin Solid Films 352:66

    Article  Google Scholar 

  19. Fujisaki Y, Torii K, Hiratani M, Kushida-Abdelghafar K (1977) Analysis and control of surface degenerated layers grown on thin Pb(Zr, Ti)O3 films. Appl Surf Sci 108:365

    Article  Google Scholar 

  20. Eastman DE (1970) Photoelectric work functions of transition, rare-earth, and noble metals. Phys Rev B 2:1

    Article  Google Scholar 

  21. Pintilie L, Stancu V, Trupina L, Pintilie I (2010) Ferroelectric Schottky diode behavior from a SrRuO3–Pb(Zr0.2Ti0.8)O3–Ta structure. Phys Rev B 82:085319

    Article  Google Scholar 

  22. Pintilie L, Dragoi C, Pintilie I (2011) Interface controlled photovoltaic effect in epitaxial Pb(Zr, Ti)O3 films with tetragonal structure. J Appl Phys 110:044105

    Article  Google Scholar 

  23. Arenholz E, Van der Laan G, Fraile-Rodríguez A, Yu P, He Q, Ramesh R (2010) Probing ferroelectricity in PbZr0.2Ti0.8O3 with polarized soft X rays. Phys Rev B 82:140103(R)

    Article  Google Scholar 

  24. Krug I, Barrett N, Petraru A, Locatelli A, Mentes TO, Niño MA, Rahmanizadeh K, Bihlmayer G, Schneider CM (2010) Extrinsic screening of ferroelectric domains in Pb(Zr0.48Ti0.52)O3. Appl Phys Lett 94:222903

    Article  Google Scholar 

  25. Dragoi C, Gheorghe NG, Lungu GA, Trupina L, Ibanescu AG, Teodorescu CM (2012) X-ray photoelectron spectroscopy of pulsed laser deposited Pb(Zr, Ti)O3−δ. Phys Status Solidi A 209:1049

    Article  Google Scholar 

  26. Teodorescu CM, Esteva JM, Karnatak RC, El Afif A (1994) An approximation of the Voigt-I profile for the fitting of experimental X-ray-absorbtion data. Nucl Instrum Methods Phys Res A 345:141

    Article  Google Scholar 

  27. Mardare D, Luca D, Teodorescu CM, Macovei D (2007) On the hydrophilicity of nitrogen-doped TiO2 thin films. Surf Sci 601:4515

    Article  Google Scholar 

  28. Luca D, Teodorescu CM, Apetrei R, Macovei D, Mardare D (2007) Preparation and characterization of increased-efficiency photocatalytic TiO2−2x N x thin films. Thin Solid Films 515:8605

    Article  Google Scholar 

  29. Jupille J, Chandesris D, Danger J, Le Fevre P, Magnan H, Bourgeois S, Gotter R, Morgante A (2001) Resonant L2MV and L3MV Auger transitions in titanium dioxide. Surf Sci 482:453

    Article  Google Scholar 

  30. Wagner CD, Davis LE, Zeller MV, Taylor JA, Raymond RM, Gale LH (1981) Empirical atomic sensitivity factors for qualitative analysis by electron spectroscopy for chemical analysis. Surf Interface Anal 3:211

    Article  Google Scholar 

  31. Gheorghe NG, Lungu GA, Costescu RM, Teodorescu CM (2011) Significantly different contamination of atomically clean Si(001) when investigated by XPS and AES. Phys Status Solidi B 248:1919

    Article  Google Scholar 

  32. Gheorghe NG, Lungu GA, Costescu RM, Popescu DG, Teodorescu CM (2011) Enhanced contamination of Si(001) when analyzed by AES with respect to XPS. Optoelectron Adv Mater Rapid Commun 5:499

    Google Scholar 

  33. Costescu RM, Gheorghe NG, Husanu MA, Lungu GA, Macovei D, Pintilie I, Popescu DG, Teodorescu CM (2012) Epitaxial ferromagnetic samarium and samarium silicide synthesized on Si(001). J Mater Sci 47:7225. doi:10.1007/s10853-017-6672-z

    Article  Google Scholar 

  34. Gheorghe NG, Lungu GA, Husanu MA, Costescu RM, Macovei D, Teodorescu CM (2013) Structure, reactivity, electronic configuration and magnetism of samarium atomic layers deposited on Si(001) by molecular beam epitaxy. Appl Surf Sci 267:106

    Article  Google Scholar 

  35. Kurasawa M, McIntyre P (2005) Surface passivation and electronic structure characterization of PbTiO3 thin films and Pt/PbTiO3 interfaces. J Appl Phys 97:104110

    Article  Google Scholar 

  36. Chen Y, McIntyre P (2007) Lead zirconate titanate ferroelectric thin film capacitors: effects of surface treatments on ferroelectric properties. Appl Phys Lett 91:072910

    Article  Google Scholar 

  37. Pintilie L, Boerasu I, Gomes MJM, Zhao T, Ramesh R, Alexe M (2005) Metal–ferroelectric–metal structures with Schottky contacts. II. Analysis of the experimental current–voltage and capacitance–voltage characteristics of Pb(Zr, Ti)O3 thin films. J Appl Phys 98:124104

    Article  Google Scholar 

  38. Zubko P, Jung DJ, Scott JF (2006) Space charge effects in ferroelectric thin films. J Appl Phys 100:114112

    Article  Google Scholar 

  39. Pancotti A, Wang J, Chen P, Tortech L, Teodorescu CM, Frantzeskakis E, Barrett N (2013) X-ray photoelectron diffraction study of relaxation and rumpling of ferroelectric domains in BaTiO3(001). Phys Rev B 87:184116

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the UEFISCDI Contract PCCE No. 3/2011 granted by the Romanian Ministry of Education. We acknowledge the valuable help of Iuliana Pasuk with the X-ray diffraction data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicoleta G. Apostol.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 264 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoflea, L.E., Apostol, N.G., Chirila, C. et al. Schottky barrier versus surface ferroelectric depolarization at Cu/Pb(Zr, Ti)O3 interfaces. J Mater Sci 49, 3337–3351 (2014). https://doi.org/10.1007/s10853-014-8041-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8041-6

Keywords

Navigation