Skip to main content
Log in

Comparison between the ferroelectric/electric properties of the PbZr0.52Ti0.48O3 films grown on Si (100) and on STO (100) substrates

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ferroelectric/electric properties of PbZr0.52Ti0.48O3 (PZT) thin films grown by pulsed laser deposition (PLD) on two different substrates, Si (001) and SrTiO3 (STO) (001), were comparatively analyzed. The structural characterization has revealed the epitaxial relationship between the grown layers and the two types of substrates, with larger density of structural defects for the films deposited on Si (001) with buffer STO layer. The ferroelectric/electric properties are also different, with lower remnant polarization (about half of the value obtained on STO substrate), higher dielectric constant (about two times larger), and lower leakage current (about two orders of magnitude lower) for the PZT films deposited on Si (001) compared to those deposited on (001) STO substrates. Nevertheless, the results show that the use of a STO buffer layer on Si can be a solution to obtain good quality PZT capacitor structures without using expensive single-crystal oxide substrates. In this way, applications based on PZT capacitors (e.g. non-volatile memories, pyroelectric detectors, light switches, etc.) would be more easily integrated directly on Si wafers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Uchino K (2000) Ferroelectric devices. Marcel Dekker, New York

    Google Scholar 

  2. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press Inc, London

    Google Scholar 

  3. Kim DM, Eom CB, Nagarajan V, Ouyang J, Ramesh R, Vaithyanathan V, Schlom DG (2006) Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52, Ti0.48)O3 films on Si and SrTiO3 substrates. Appl Phys Lett 88:142904

    Article  Google Scholar 

  4. Uchino K (1996) Piezoelectric actuators and ultrasonic motors. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  5. Noheda B, Gonzalo JA, Cross LE, Guo R, Park SE, Cox DE, Shirane G (2000) Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of Pb(Zr0.52Ti0.48)O3. Phys Rev B 61(13):8687

    Article  Google Scholar 

  6. Pintilie L, Vrejoiu I, Hesse D, Le Rhun G, Alexe M (2007) Extrinsic contributions to the apparent thickness dependence of the dielectric constant in epitaxial Pb(Zr, Ti)O3 thin films. Phys Rev B 75(22):224113

    Article  Google Scholar 

  7. Pintilie L (2009) Advanced electrical characterization of ferroelectric thin films: facts and artifacts. J Optoelectron Adv Mater 11(3):215

    Google Scholar 

  8. Qin M, Yao K, Liang YC (2009) Photovoltaic characteristics in polycrystalline and epitaxial (Pb0.97 La0.03) (Zr0.52Ti0.48)O3 ferroelectric thin films sandwiched between different top and bottom electrodes. J Appl Phys 105(6):061624

    Article  Google Scholar 

  9. Zhu ZX, Li JF (2010) A comparative study of fibre-textured and epitaxial Nb-doped Pb(Zr0.53Ti0.47)O3 thin films on different substrates. Appl Surf Sci 256:3880

    Article  Google Scholar 

  10. Vrejoiu I, Le Rhun G, Pintilie L, Hesse D, Alexe M, Gösele U (2006) Intrinsic ferroelectric properties of strained tetragonal Pb(Zr0.2, Ti0.8)O3 obtained on layer–by–layer grown, defect–free single–crystalline films. Adv Mater 18:1657–1661

    Article  Google Scholar 

  11. Chen F, Tan X, Huang Z, Xuan X, Wu W (2010) Effect of electrode configurations on the process-induced imprint behavior of epitaxial Pb (Zr0.52Ti0.48)O3 capacitors. Appl Phys Lett 96:262902

    Article  Google Scholar 

  12. Khan AI, Yu P, Trassin M, Lee MJ, You L, Salahuddin S (2014) The effects of strain relaxation on the dielectric properties of epitaxial ferroelectric Pb(Zr0.2Ti0.8)TiO3 thin films. Appl Phys Lett 105:022903

    Article  Google Scholar 

  13. Nguyen MD, Dekkers M, Houwman E, Steenwelle R, Wan X, Roelofs A, Schmitz-Kempen T, Rijnders G (2011) Misfit strain dependence of ferroelectric and piezoelectric properties of clamped (001) epitaxial Pb(Zr0.52, Ti0.48)O3 thin films. Appl Phys Lett 99:252904

    Article  Google Scholar 

  14. Zhu Y, Yan P, Yi T, Cao L, Li L (1999) Interface diffusion and chemical reaction on the interface of a PZT film/Si(111) sample during annealing treatment in N2 and vacuum. Surf Interface Anal 27:972

    Article  Google Scholar 

  15. Lin A, Hong X, Wood V, Verevkin AA, Ahn CH, McKee RA, Walker FJ, Specht ED (2001) Epitaxial growth of Pb.Zr0.2Ti0.8.O3 on Si and its nanoscale piezoelectric properties. Appl Phys Lett 78:2034

    Article  Google Scholar 

  16. Basit NA, Kim HK, Blachere J (1998) Growth of highly oriented Pb(Zr, Ti)O3 films on MgO-buffered oxidized Si substrates and its application to ferroelectric nonvolatile memory field-effect transistors. Appl Phys Lett 73:3941

    Article  Google Scholar 

  17. Wang Y, Ganpule C, Liu BT, Li H, Mori K, Hill B, Wuttig M, Ramesh R, Finder J, Yu Z, Droopad R, Eisenbeiser K (2002) Epitaxial ferroelectric Pb(Zr, Ti)O3 thin films on Si using SrTiO3 template layers. Appl Phys Lett 80:97

    Article  Google Scholar 

  18. Horita S, Kawada T, Abe Y (1996) Characterization of Pb(ZrxTi1-x)O3 thin film on silicon Substrate with heteroepitaxial yttria-stabilized zirconia (YSZ) buffer layer. Jpn J Appl Phys 35:L1357

    Article  Google Scholar 

  19. Shih WC, Juan PC, Lee JY (2008) Fabrication and characterization of metal-ferroelectric (PbZr0.53Ti0.47O3)–Insulator (Y2O3)–semiconductor field effect transistors for nonvolatile memory applications. J Appl Phys 103:094110

    Article  Google Scholar 

  20. Ramesh R, Gilchrist H, Sands T, Keramidas VG, Haakenaasen R, Fork DK (1993) Ferroelectric LaSrCoO/PbZrTiO/LaSrCoO heterostructures on silicon via template growth. Appl Phys Lett 63:3592

    Article  Google Scholar 

  21. Eom CB, Van Dover RB, Phillips JM, Werder DJ, Marshall JH, Chen CH, Cava RJ, Fleming RM, Fork DK (1993) Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRu03) isotropic metallic oxide electrodes. Appl Phys Lett 63:2570

    Article  Google Scholar 

  22. Hubbard KJ, Schlom DG (1996) Thermodynamic stability of binary oxides in contact with silicon. J Mater Res 11:2757

    Article  Google Scholar 

  23. McKee RA, Walker FJ, Chisholm MF (1998) Crystalline oxides on silicon: the first five monolayers. Phys Rev Lett 81:3014

    Article  Google Scholar 

  24. Reiner JW, Kolpak AM, Segal Y, Garrity KF, Ismail-Beigi S, Ahn CH, Walker FJ (2010) Crystalline oxides on silicon. Adv Mater 22:2919

    Article  Google Scholar 

  25. Niu G, Saint-Girons G, Vilquin B, Delhaye G, Maurice JL, Botella C, Robach Y, Hollinger G (2009) Molecular beam epitaxy of SrTiO3 on Si (001): early stages of the growth and strain relaxation. Appl Phys Lett 95:062902

    Article  Google Scholar 

  26. Niu G, Penuelas J, Largeau L, Vilquin B, Maurice JL, Botella C, Hollinger G, Saint-Girons G (2011) Evidence for the formation of two phases during the growth of SrTiO3 on silicon. Phys Rev B 83:054105

    Article  Google Scholar 

  27. Schmidbauer M, Kwasniewski A, Schwarzkopf J (2012) High-precision absolute lattice parameter determination of SrTiO3, DyScO3 and NdGaO3 single crystals. Acta Crystallogr B 68:8

    Article  Google Scholar 

  28. Filippi C, Singh DJ, Umrigar CJ (1994) All-electron local-density and generalized-gradient calculations of the structural properties of semiconductors. Phys Rev B 50:14947

    Article  Google Scholar 

  29. Hÿtch MJ, Putaux JL, Pénisson JM (2003) Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature 423:27

    Article  Google Scholar 

  30. Hÿtch MJ, Snoeck F, Kilaas R (1998) Ultramicroscopy 74:131

    Article  Google Scholar 

  31. Choi KJ, Biegalski M, Li Y, Sharan A, Schubert J, Uecker R, Reiche P, Chen YB, Pan XQ, Gopalan V, Chen LQ, Schlom DG, Eom CB (2004) Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306:1005

    Article  Google Scholar 

  32. Ohno T, Ishiduka M, Arai T, Yanagida H, Matsuda T, Sakamoto N, Wakiya N, Suzuki H (2012) Strain-induced electrical properties of lead zirconate titanate thin films on a Si wafer with controlled oxide electrode structure. Jpn J Appl Phys 51:09LA13

    Article  Google Scholar 

  33. Cao J, Wu J (2011) Strain effects in low-dimensional transition metal oxides. Mat Sci Eng Rep 71:35–52

    Article  Google Scholar 

  34. Le Rhun G, Vrejoiu I, Pintilie L, Hesse D, Alexe M, Gosele U (2006) Increased ferroelastic domain mobility in ferroelectric thin films and its use in nano-patterned capacitors. Nanotechnology 17:3154

    Article  Google Scholar 

  35. Luo Y, Li X, Chang L, Gao W, Yuan G, Yin J, Liu Z (2013) Upward ferroelectric self-poling in (001) oriented PbZr0.2Ti0.8O3 epitaxial films with compressive strain. AIP Adv 3:122101

    Article  Google Scholar 

  36. Dahl O, Grepstad JK, Tybell T (2009) Polarization direction and stability in ferroelectric lead titanate thin films. J Appl Phys 106:084104

    Article  Google Scholar 

  37. Apostol NG, Stoflea LE, Lungu GA, Tache CA, Popescu DG, Pintilie L, Teodorescu CM (2013) Band bending at free Pb(Zr, Ti)O3 surfaces analyzed by X-ray photoelectron spectroscopy. Mat Sci Eng B 178:1317

    Article  Google Scholar 

  38. Schroeder DK (1998) Semiconductor material and device characterization. Wiley, New York

    Google Scholar 

  39. Hrib LM, Boni AG, Chirila C, Pasuk I, Pintilie I, Pintilie L (2013) Electrode interface control of the Schottky diode-like behavior in epitaxial Pb(Zr0.2Ti0.8)O3 thin films: a critical analysis. J Appl Phys 113:214108

    Article  Google Scholar 

  40. Picinin A, Lente MH, Eiras JA, Rino JP (2004) Theoretical and experimental investigations of polarization switching in ferroelectric materials. Phys Rev B 69:064117

    Article  Google Scholar 

  41. Lee HN, Nakhmanson SM, Chisholm MF, Christen HM, Rabe KM, Vanderbil D (2007) Suppressed dependence of polarization on epitaxial strain in highly polar ferroelectrics. Phys Rev Lett 98:217602

    Article  Google Scholar 

  42. Han MG, Marshall MSH, Wu L, Schofield MA, Aoki T, Twesten R, Hoffman J, Walker FJ, Ahn CH, Zhu Y (2014) Interface-induced nonswitchable domains in ferroelectric thin films. Nat Commun 5:4693

    Google Scholar 

  43. Alpay SP, Misirlioglu IB, Nagarajan V, Ramesh R (2004) Can interface dislocations degrade ferroelectric properties? Appl Phys Lett 85:2044

    Article  Google Scholar 

  44. Wood C, Jena D (2008) Polarization effects in semiconductors: from ab initio theory to device applications. Springer, New York

    Book  Google Scholar 

  45. Hartmann AJ, Neilson M, Lamb RN, Watanabe K, Scott JF (2000) Ruthenium oxide and strontium ruthenate electrodes for ferroelectric thin-films capacitors. Appl Phys A 70:239

    Article  Google Scholar 

  46. Lide DR (1995) Handbook of chemistry and physics, 76th edn. CRC, Boca Raton

    Google Scholar 

  47. Lo VC (2002) Modeling the role of oxygen vacancy on ferroelectric properties in thin films. Appl Phys Lett 92:6778

    Google Scholar 

  48. Li KT, Lo VC (2005) Simulation of oxygen vacancy induced phenomena in ferroelectric thin films. J Appl Phys 97:034107

    Article  Google Scholar 

  49. Jin L, Li F, Zhang S (2014) Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 97(1):1

    Article  Google Scholar 

  50. Kim L, Jung D, Kim J, Kim YS, Lee J (2003) Appl Phys Lett 82:2118

    Article  Google Scholar 

  51. Boersu I, Pintilie L, Pereira M, Vasilevskiy MI, Gomes MJM (2003) Competition between ferroelectric and semiconductor properties in Pb.Zr0.65Ti0.35.O3 thin films deposited by sol–gel. J Appl Phys 93:4776

    Article  Google Scholar 

  52. Chai FK, Brews JR, Schrimpf RD, Birnie DP III (1995) Limitations of the uniform effective field approximation due to doping of ferroelectric thin-film capacitors. J Appl Phys 78:4766

    Article  Google Scholar 

  53. Delimova LA, Grekhov IV, Mashovets DV, Tyaginov SE, Shin S, Koo JM, Kim S, Park Y (2005) Transient-current measurement of the trap charge density at interfaces of a thin-film metal/ferroelectric/metal structure. Appl Phys Lett 87:192101

    Article  Google Scholar 

  54. Scott JF (2000) Ferroelectric memories. Springer, Berlin

    Google Scholar 

  55. Simmons JG (1969) Effect of deep traps on the barrier heights of metal-insulator-metal tunnel junctions. Phys Rev Lett 23:297

    Article  Google Scholar 

  56. Pintilie L, Vrejoiu I, Hesse D, LeRhun G, Alexe M (2007) Ferroelectric polarization-leakage current relation in high quality epitaxial Pb(Zr, Ti)O3 films. Phys Rev B 75:104103

    Article  Google Scholar 

  57. Pintilie L, Alexe M (2005) Metal-ferroelectric-metal heterostructures with Schottky contacts. Influence of the ferroelectric properties. J Appl Phys 98:124103

    Article  Google Scholar 

  58. Pintilie L, Dragoi C, Chu YH, Martin LW, Ramesh R, Alexe M (2009) Orientation-dependent potential barriers in case of epitaxial Pt–BiFeO3–SrRuO3 capacitors. Appl Phys Lett 94:232902

    Article  Google Scholar 

  59. Moret MP, Devillers MAC, Wörhoff K, Larsen PK (2002) Optical properties of PbTiO3, PbZrxTi1−xO3, and PbZrO3 films deposited by metal organic chemical vapor on SrTiO3. J Appl Phys 92:468

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Romanian Ministry of Education-Executive Unit for Funding High Education, Research, Development and Innovation (MEN-UEFISCDI) through the Idea-Complex Research Grant PN-II-ID-PCCE-2011-2-0006 (contract nr. 3/2012). The authors wish to thank also Guillaume Saint-Girons, G. Niu, and Y. Robach from Institute des Nanotechnologies de Lyon Ecole Centrale de Lyon 36, Avenue Guy de Collongue 69134 Ecully, France for providing the Si substrates with the STO buffer layer deposited by MBE. Andra Georgia Boni thanks the strategic Grant POSDRU/159/1.5/S/137750, “Project Doctoral and Postdoctoral programs support for increased competitiveness in Exact Sciences research” co-financed by the European Social Found within the Sectorial Operational Program Human Resources Development 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Chirila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirila, C., Boni, A.G., Pasuk, I. et al. Comparison between the ferroelectric/electric properties of the PbZr0.52Ti0.48O3 films grown on Si (100) and on STO (100) substrates. J Mater Sci 50, 3883–3894 (2015). https://doi.org/10.1007/s10853-015-8907-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8907-2

Keywords

Navigation