Skip to main content
Log in

Isothermal crystallization kinetics and melting behavior of poly(l-lactic acid)/WS2 inorganic nanotube nanocomposites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Environmentally friendly and biocompatible tungsten disulphide inorganic nanotubes (INT-WS2) were introduced into a poly(l-lactic acid) biopolymer matrix to generate novel nanocomposite materials through an advantageous melt-processing route. The effects of INT-WS2 on isothermal crystallization and melting behaviour of PLLA have been investigated. INT-WS2 has excellent acceleration effectiveness on the melt-crystallization of PLLA better than the promising nano-sized fillers reported in the literature (e.g. carbon nanotubes, graphene oxide, cellulose nanocrystals). In particular, the addition of INT-WS2 remarkably influences the energetics and kinetics of nucleation and growth of PLLA, reducing the fold surface free energy by up to 18 %. In the same way, the final crystallinity and subsequent melting behaviour of PLLA were controlled by both the incorporation INT-WS2 and variation of the crystallization temperature. These observations will enable the development of novel melt-processable PLLA/INT-WS2 nanocomposites with improved crystallization behaviour for many eco-friendly and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sodergard A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27:1123–1163

    Article  Google Scholar 

  2. Rasal RM, Janrkor AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  Google Scholar 

  3. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–882

    Article  Google Scholar 

  4. Tian H, Tang Z, Zhuang X, Chen X, Jing Z (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280

    Article  Google Scholar 

  5. Saeidou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    Article  Google Scholar 

  6. Kulinski Z, Piorkowska E (2005) Crystallization, structure and properties of plasticized poly(l-lactide). Polymer 46:10290–10300

    Article  Google Scholar 

  7. Lemmouchi Y, Murariu M, Santos AMD, Amass AJ, Schacht E, Dubois P (2009) Plasticization of poly(lactide) with blends of tributyl citrate and low molecular weight poly(d, l-lactide)-b-poly(ethylene glycol) copolymers. Eur Polym J 45:2839–2848

    Article  Google Scholar 

  8. Libster D, Aserin A, Garti N (2007) Advanced nucleating agents for polypropylene. Polym Adv Technol 18:685–695

    Article  Google Scholar 

  9. Pan P, Liang Z, Cao A, Inoue Y (2009) Layered metal phosphonate reinforced poly(l-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces 1:402–411

    Article  Google Scholar 

  10. Liang W, Zhong X (2010) Effect of a novel nucleating agent on isothermal crystallization of poly(l-lactic acid). Chin J Chem Eng 18:899–904

    Article  Google Scholar 

  11. Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107:2246–2255

    Article  Google Scholar 

  12. Pan P, Yang J, Shan G, Bao Y, Weng Z, Inoue Y (2012) Nucleation effects of nucleobases on the crystallization kinetics of poly(l-lactide). Macromol Mater Eng 297:670–679

    Article  Google Scholar 

  13. Cai Y, Yan S, Yin J, Fan Y, Chen X (2011) Crystallization behavior of biodegradable poly(l-lactic acid) filled with a powerful nucleating agent: N, N′-bis(benzoyl) suberic acid dihydrazide. J Appl Polym Sci 121:1408–1416

    Article  Google Scholar 

  14. Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)–crystallization and mechanical effects. Comp Sci Technol 70:815–821

    Article  Google Scholar 

  15. Li Y, Chen C, Li J, Sun XS (2012) Isothermal crystallization and melting behaviors of bionanocomposites from poly(lactic acid) and TiO2 nanowires. J Appl Polym Sci 124:2968–2977

    Article  Google Scholar 

  16. Pan H, Qiu Z (2010) Biodegradable poly(l-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules 43:1499–1506

    Article  Google Scholar 

  17. Yu J, Qiu Z (2011) Effect of low octavinyl-polyhedral oligomeric silsesquioxanes loadings on the melt crystallization and morphology of biodegradable poly(l-lactide). Thermochim Acta 519:90–95

    Article  Google Scholar 

  18. Ublekov F, Baldrian J, Kratochvil J, Steinhart M, Nedkov E (2012) Influence of clay content on the melting behavior and crystal structure of nonisothermal crystallized poly(l-lactic acid)/nanocomposites. J Appl Polym Sci 124:1643–1648

    Article  Google Scholar 

  19. Shieh YT, Twu YK, Su CC, Lin RH, Liu GL (2010) Crystallization kinetics study of poly(l-lactic acid)/carbon nanotubes nanocomposites. J Polym Sci, Part B: Polym Phys 48:983–989

    Article  Google Scholar 

  20. Han L, Han C, Bian J, Bian Y, Lin H, Wang X, Zhang H, Dong L (2012) Preparation and characteristics of a novel nano-sized calcium carbonate (nano-CaCo3)-supported nucleating agent of poly(l-lactide). Polym Eng Sci 52:1474–1484

    Article  Google Scholar 

  21. Song P, Chen G, Wei Z, Chang Y, Zhang W, Liang J (2012) Rapid crystallization of poly(l-lactic acid) induced by a nanoscaled zinc citrate complex as nucleating agent. Polymer 53:4300–4309

    Article  Google Scholar 

  22. Wang H, Qiu Z (2012) Crystallization kinetics and morphology of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites: influences of graphene oxide loading and crystallization temperature. Thermochim Acta 527:40–46

    Article  Google Scholar 

  23. Tsuji H, Kawashima Y, Takikawa H, Tanaka S (2007) Poly(l-lactide)/nano-structured carbon composites: conductivity, thermal properties, crystallization, and biodegradation. Polymer 48:4213–4225

    Article  Google Scholar 

  24. Naffakh M, Díez-Pascual AM, Marco C, Ellis G, Gómez-Fatou MA (2013) Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites. Prog Polym Sci 38:1163–1231

    Article  Google Scholar 

  25. Tenne R, Margulis L, Genut M, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulphide. Nature 360:444–445

    Article  Google Scholar 

  26. Margulis L, Salitra G, Tenne R, Talianker M (1993) Nested fullerene-like structures. Nature 365:113–114

    Article  Google Scholar 

  27. Zak A, Sallacan Ecker L, Fleischer N, Tenne R (2011) Large-scale synthesis of WS2 multiwall nanotubes and their dispersion, an update. Sens Transducers J 12:1–10

    Google Scholar 

  28. Pardo M, Shuster-Meiseles T, Levin-Zaidman S, Rudich A, Rudich Y (2014) Low cytotoxicity of inorganic nanotubes and fullerene-like nanostructures in human bronchial epithelial cells: relation to inflammatory gene induction and antioxidant response. Environ Sci Technol 48:3457–3466

    Article  Google Scholar 

  29. Goldman EB, Zak A, Tenne R, Kartvelishvily E, Levin-Zaidman S, Neumann Y, Stiubea-Cohen R, Palmon A, Hovav AH, Aframian DJ (2015) Tissue Eng Part A 21:1013–1023

    Article  Google Scholar 

  30. Naffakh M, Marco C, Ellis G (2013) Development of novel melt-processable biopolymer nanocomposites based on poly(l-lactic acid) and WS2 inorganic nanotubes. Cryst Eng Comm 16:5062–5072

    Article  Google Scholar 

  31. Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid. Z Z Polym 251:980–990

    Article  Google Scholar 

  32. Hay JN (1971) Application of the modified Avrami equations to polymer crystallisation kinetics. Br Polym J 3:74–82

    Article  Google Scholar 

  33. Yasuniwa MS, Tsubakihara Y, Sugimoto Y, Nakafuku C (2004) Thermal analysis of the double-melting behavior of poly(l-lactic acid). J Polym Sci Part B 42:25–32

    Article  Google Scholar 

  34. He Y, Fan Z, Hu Y, Wu T, Wei J, Li S (2007) DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly(l-lactide) with different molecular weights. Eur Polym J 43:4431–4439

    Article  Google Scholar 

  35. Pan PJ, Kai WH, Zhu B, Dong T, Inoue Y (2007) Polymorphous crystallization and multiple melting behavior of poly(l-lactide): molecular weight dependence. Macromolecules 40:6898–6905

    Article  Google Scholar 

  36. Pan PJ, Kai WH, Zhu B, Dong T, Inoue Y (2008) Polymorphic transition in disordered poly(l-lactide) crystals induced by annealing at elevated temperatures. Macromolecules 41:4296–4304

    Article  Google Scholar 

  37. Song P, Chen G, Wei Z, Zhang W, Liang J (2013) Calorimetric analysis of the multiple melting behavior of melt-crystallized poly(l-lactic acid) with a low optical purity. J Therm Anal Calorim 111:1507–1514

    Article  Google Scholar 

  38. Hoffman JD, Weeks JJ (1962) Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand A66:13–28

    Article  Google Scholar 

  39. Lauritzen JL, Hoffman JD (1973) Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J Appl Phys 44:4340–4352

    Article  Google Scholar 

  40. Hoffman JD, Davies GT, Lauritzen JJ (1976) In: Hannay NB (ed) Treatise on solid state chemistry, vol 3. Plenum Press, New York

    Google Scholar 

  41. Vasanthakumari R, Pennings AJ (1983) Crystallization kinetics of poly(lactic acid). Polymer 24:175–178

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry Economy and Competitivity (MINECO), Project MAT2013-41021-P. MN would also like to acknowledge the MINECO for a ‘Ramón y Cajal’ Senior Research Fellowship. Very special thanks and appreciation go to Dr. Alla Zak for providing the WS2 inorganic nanotubes that made this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Naffakh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naffakh, M., Marco, C. Isothermal crystallization kinetics and melting behavior of poly(l-lactic acid)/WS2 inorganic nanotube nanocomposites. J Mater Sci 50, 6066–6074 (2015). https://doi.org/10.1007/s10853-015-9156-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9156-0

Keywords

Navigation