Skip to main content
Log in

Layer-by-layer assembly of poly(vinylpyrrolidone)-embedded gold nanoparticles with carbon nanotubes for glycerol electro-oxidation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, poly(vinylpyrrolidone) (PVP) served as reducing and capping agents for the synthesis of gold nanoparticles (AuNPs) in alkaline medium. The PVP-AuNPs were then combined with carbon nanotubes (CNTs) to assemble thin films onto ITO via the layer-by-layer (LbL) technique. The PVP-AuNPs/CNTs LbL films were analyzed with UV–Vis spectroscopy and atomic force microscopy (AFM). The latter technique revealed that the PVP-AuNPs/CNTs LbL films took over the entire ITO surface homogeneously, which positively impacted the magnitude of the anodic currents for glycerol electro-oxidation. Such results indicated that the combination PVP-AuNPs with CNTs in an adequate LbL fashion nanostructure may be feasible for applications in various fields such as catalysis, fuel cells, and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Pissuwan D, Valenzuela S, Killingsworth M, Xu X, Cortie M (2007) Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J Nanopart Res 9:1109–1124

    Article  Google Scholar 

  2. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706

    Article  Google Scholar 

  3. Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192

    Article  Google Scholar 

  4. El-Deab MS, Ohsaka T (2002) An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes. Electrochem Commun 4:288–292

    Article  Google Scholar 

  5. de Morais LMC, Carvalho JC, Sant’Anna C, Eugenio M, Gasparotto LHS, Lima KMG (2015) A low-cost microcontrolled photometer with one color recognition sensor for selective detection of Pb2+ using gold nanoparticles. Anal Methods 7:7917–7922

    Article  Google Scholar 

  6. Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 5:544–557

    Article  Google Scholar 

  7. Jerkiewicz G, DeBlois M, Radovic-Hrapovic Z, Tessier JP, Perreault F, Lessard J (2005) Underpotential deposition of hydrogen on benzene-modified Pt(111) in aqueous H2SO4. Langmuir 21:3511–3520

    Article  Google Scholar 

  8. El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834

    Article  Google Scholar 

  9. Lima KMG, Junior RFA, Araujo AA, Oliveira ALCSL, Gasparotto LHS (2014) Environmentally compatible bioconjugated gold nanoparticles as efficient contrast agents for colorectal cancer cell imaging. Sens Actuators 196:306–313

    Article  Google Scholar 

  10. Gomes J, Tremiliosi-Filho G (2011) Spectroscopic studies of the glycerol electro-oxidation on polycrystalline Au and Pt surfaces in acidic and alkaline media. Electrocatalysis 2:96–105

    Article  Google Scholar 

  11. Kwon Y, Lai SCS, Rodriguez P, Koper MTM (2011) Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? J Am Chem Soc 133:6914–6917

    Article  Google Scholar 

  12. Simões FC, dos Anjos DM, Vigier F, Léger JM, Hahn F, Coutanceau C, Gonzalez ER, Tremiliosi-Filho G, de Andrade AR, Olivi P, Kokoh KBJ (2007) Electroactivity of tin modified platinum electrodes for ethanol electrooxidation. J Power Sources 167:1–10

    Article  Google Scholar 

  13. Yu JS, Fujita T, Inoue A, Sakurai T, Chen MW (2010) Electrochemical synthesis of palladium nanostructures with controllable morphology. Nanotechnology 21:085601

    Article  Google Scholar 

  14. Gomes JF, Gasparotto LHS, Tremiliosi-Filho G (2013) Glycerol electro-oxidation over glassy-carbon-supported Au nanoparticles: direct influence of the carbon support on the electrode catalytic activity. Phys Chem Chem Phys 15:10339–10349

    Article  Google Scholar 

  15. Marshall AT, Golovko V, Padayachee D (2015) Influence of gold nanoparticle loading in Au, C on the activity towards electrocatalytic glycerol oxidation. Electrochim Acta 153:370–378

    Article  Google Scholar 

  16. Sun YG, Mayers B, Xia YN (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3:675–679

    Article  Google Scholar 

  17. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 7:801–802

    Article  Google Scholar 

  18. Ji XH, Song XN, Li J, Bai YB, Yang WS, Peng XG (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129:13939–13948

    Article  Google Scholar 

  19. Chen DH, Wu SH (2000) Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem Mater 12:1354–1360

    Article  Google Scholar 

  20. Gasparotto LHS, Garcia AC, Gomes JF, Tremiliosi-Filho G (2012) Electrocatalytic performance of environmentally friendly synthesized gold nanoparticles towards the borohydride electro-oxidation reaction. J Power Sources 218:73–78

    Article  Google Scholar 

  21. Ferreira EB, Gomes JF, Tremiliosi-Filho G, Gasparotto LHS (2014) One-pot eco-friendly synthesis of gold nanoparticles by glycerol in alkaline medium: role of synthesis parameters on the nanoparticles characteristics. Mater Res Bull 55:131–136

    Article  Google Scholar 

  22. Garcia AC, Gasparotto LHS, Gomes JF, Tremiliosi-Filho G (2012) Straightforward synthesis of carbon-supported Ag nanoparticles and their application for the oxygen reduction reaction. Electrocatalysis 3:147–152

    Article  Google Scholar 

  23. Hoppe CE, Lazzari M, Pardinas-Blanco IN, Lopez-Quintela MA (2006) One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir 22:7027–7034

    Article  Google Scholar 

  24. Washio I, Xiong Y, Yin Y, Xia Y (2006) Reduction by the end groups of poly(vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Adv Mater 18:1745–1749

    Article  Google Scholar 

  25. Gomes JF, Garcia AC, Ferreira EB, Pires C, Oliveira VL, Tremiliosi-Filho G, Gasparotto LHS (2015) New insights into the formation mechanism of Ag, Au and AgAu nanoparticles in aqueous alkaline media: alkoxides from alcohols, aldehydes and ketones as universal reducing agents. Phys Chem Chem Phys 17:21683–21693

    Article  Google Scholar 

  26. Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim Acta 50:3049–3060

    Article  Google Scholar 

  27. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452–468

    Article  Google Scholar 

  28. Lutkenhaus JL, Hammond PT (2007) Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Matter 3:804–816

    Article  Google Scholar 

  29. Siqueira JR Jr, Caseli L, Crespilho FN, Zucolotto V, Oliveira ON Jr (2010) Immobilization of biomolecules on nanostructured films for biosensing. Biosens Bioelectron 25:1254–1263

    Article  Google Scholar 

  30. Gasparotto LHS, Castelhano ALB, Gabriel RC, Dantas NO, Oliveira ON Jr, Siqueira JR Jr (2013) Electrogeneration of platinum nanoparticles in a matrix of dendrimer/carbon nanotubes. Phys Chem Chem Phys 15:17887–17892

    Article  Google Scholar 

  31. Siqueira JR Jr, Gabriel RC, Zucolotto V, Silva ACA, Dantas NO, Gasparotto LHS (2012) Electrodeposition of catalytic and magnetic gold nanoparticles on dendrimer-carbon nanotube layer-by-layer films. Phys Chem Chem Phys 14:14340–14343

    Article  Google Scholar 

  32. Kotov NA (1999) Layer-by-layer self-assembly: the contribution of hydrophobic interactions. Nanostruct Mater 12:789–796

    Article  Google Scholar 

  33. Ariga K, Hill JP, Ji QM (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9:2319–2340

    Article  Google Scholar 

  34. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  35. Grace AN, Pandian K (2006) One pot synthesis of polymer protected gold nanoparticles and nanoprisms in glycerol. Colloids Surf A 290:138–142

    Article  Google Scholar 

  36. Wu F, Yang Q (2011) Ammonium bicarbonate reduction route to uniform gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering. Nano Res 4:861–869

    Article  Google Scholar 

  37. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217

    Article  Google Scholar 

  38. Siqueira JR Jr, Werner CF, Bäcker M, Poghossian A, Zucolotto V, Oliveira ON Jr, Schöning MJ (2009) Layer-by-Layer assembly of carbon nanotubes incorporated in light-addressable potentiometric sensors. J Phys Chem C 113:14765–14770

    Article  Google Scholar 

  39. Siqueira JR Jr, Bäcker M, Poghossian A, Zucolotto V, Oliveira ON Jr, Schöning MJ (2010) Associating biosensing properties with the morphological structure of multilayers containing carbon nanotubes on field-effect devices. Phys Status Solidi A 207:781–786

    Article  Google Scholar 

  40. Bahadir EB, Sezginturk MK (2016) Poly(amidoamine) (PAMAM): an emerging material for electrochemical bio(sensing) applications. Talanta 148:427–438

    Article  Google Scholar 

  41. Crespilho FN, Ghica ME, Zucolotto V, Nart FC, Oliveira ON Jr, Brett CMA (2007) Electroactive nanostructured membranes (ENM): synthesis and electrochemical properties of redox mediator-modified gold nanoparticles using a dendrimer layer-by-layer approach. Electroanalysis 19:805–812

    Article  Google Scholar 

  42. Burke LD, Nugent PF (1997) The electrochemistry of gold: i the redox behaviour of the metal in aqueous media. Gold Bulletin 30:43–53

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CNPq (Grants 477668/2013-5 and 442087/2014-4), FAPEMIG (Grant APQ-01763-13), and Rede Mineira de Química (FAPEMIG—CEX-RED-00010-14) for the financial support. Furthermore, the authors gratefully thank Prof. Noelio O. Dantas (UFU, Brazil) for the facilities with the AFM measurements, and Prof. Waldir Avansi Jr. (UFSCar, Brazil) for the TEM images performed at LME/LNNano/CNPEM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José R. Siqueira Jr. or Luiz H. S. Gasparotto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siqueira, J.R., Gabriel, R.C. & Gasparotto, L.H.S. Layer-by-layer assembly of poly(vinylpyrrolidone)-embedded gold nanoparticles with carbon nanotubes for glycerol electro-oxidation. J Mater Sci 51, 8323–8330 (2016). https://doi.org/10.1007/s10853-016-0061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0061-y

Keywords

Navigation