Skip to main content
Log in

Electromechanical actuators based on poly(vinylidene fluoride) with [N1 1 1 2(OH)][NTf2] and [C2mim] [C2SO4]

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Actuators based on electroactive polymers are increasingly used in applications including microelectronic devices and artificial muscles, demanding low voltage operation and controllable switching response. This work reports on the preparation of electroactive actuators based on poly(vinylidene fluoride) (PVDF) composites with 10, 25, and 40 wt% N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium bis(trifluoromethylsulfonyl)imide ([N1 1 1 2(OH)][NTf2]) and 1-Ethyl-3-methylimidazolium Ethylsulfate ([C2mim][C2SO4]) ionic liquids (ILs) prepared by solvent casting. Independent of the IL type, its presence leads to the crystallization of PVDF in the piezoelectric β-phase. The degree of crystallinity and electrical conductivity of the samples strongly depends on ILs type and content. The highest electrical conductivity was found for PVDF/IL composites with 40 wt% of [N1 1 1 2(OH)][NTf2]. The strain displacement and bending of the PVDF/IL composites were evaluated as a function of IL type and content under applied peak voltages of 2.0, 5.0, and 10.0 V at a frequency of 10 mHz. Strain displacement of the actuators depends more on IL content than on IL type, and the best strain bending response was found for the PVDF/IL composite with 25 wt% of [N1 1 1 2(OH)][NTf2] at 5.0 V. Further, it is shown that [C2mim] [C2SO4]/PVDF composites do not show cytotoxic behavior, being suitable for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kim KJ, Tadokoro S (2007) Electroactive polymers for robotic applications: artificial muscles and sensors. Springer, London

  2. Bar-Cohen Y, Zhang Q (2008) Electroactive polymer actuators and sensors. MRS Bull 33:173–181

    Article  Google Scholar 

  3. Carpi F, Smela E (2009) Biomedical applications of electroactive polymer actuators. Wiley

  4. Bar-Cohen Y (2001) Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. SPIE Press

  5. Onnuri K, Tae Joo S, Moon Jeong P (2013) Fast low-voltage electroactive actuators using nanostructured polymer electrolytes. Nat Commun 4:2208

    Google Scholar 

  6. Ribeiro C, Sencadas V, Correia DM, Lanceros-Méndez S (2015) Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf B Biointerfaces 136:46–55

    Article  Google Scholar 

  7. Pang C, Lee C, Suh K-Y (2013) Recent advances in flexible sensors for wearable and implantable devices. J Appl Polym Sci 130:1429–1441

    Article  Google Scholar 

  8. Cheng Z, Zhang Q (2008) Field-activated electroactive polymers. MRS Bull 33:183–187

    Article  Google Scholar 

  9. Youqi W, Changjie S, Eric Z, Ji S (2004) Deformation mechanisms of electrostrictive graft elastomer. Smart Mater Struct 13:1407

    Article  Google Scholar 

  10. Bar-Cohen Y (2010) Encyclopedia of aerospace engineering. Wiley

  11. Asaka K, Mukai K, Sugino T, Kiyohara K (2013) Ionic electroactive polymer actuators based on nano-carbon electrodes. Polym Int 62:1263–1270

    Article  Google Scholar 

  12. Otero TF, Martinez JG, Arias-Pardilla J (2012) Biomimetic electrochemistry from conducting polymers. A review: artificial muscles, smart membranes, smart drug delivery and computer/neuron interfaces. Electrochim Acta 84:112–128

    Article  Google Scholar 

  13. Shankar R, Ghosh TK, Spontak RJ (2007) Dielectric elastomers as next-generation polymeric actuators. Soft Matter 3:1116–1129

    Article  Google Scholar 

  14. O’Halloran A, O’Malley F, McHugh P (2008) A review on dielectric elastomer actuators, technology, applications, and challenges. J Appl Phys 104:071101

    Article  Google Scholar 

  15. Asaka K (2012) Stretchable electronics. Wiley-VCH Verlag GmbH & Co. KGaA

  16. Ohno H (2011) Electrochemical aspects of ionic liquids. Wiley, Hoboken

  17. Hayes R, Warr GG, Atkin R (2015) Structure and nanostructure in ionic liquids. Chem Rev 115:6357–6426

    Article  Google Scholar 

  18. Smiglak M, Reichert WM, Holbrey JD et al (2006) Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? Chem Commun 24:2554–2556

  19. Earle MJ, Esperanca JMSS, Gilea MA, Canongia Lopes JN, Rebelo LPN, Magee JW, Seddon KR, Widegren JA (2006) The distillation and volatility of ionic liquids. Nature 439:831–834

    Article  Google Scholar 

  20. Esperança JMSS, Canongia Lopes JN, Tariq M, Santos LMNBF, Magee JW, Rebelo LPN (2010) Volatility of aprotic ionic liquids—a review. J Chem Eng Data 55:3–12

  21. Smiglak M, Pringle JM, Lu X, Han L, Zhang S, Gao H, MacFarlane DR, Rogers RD (2014) Ionic liquids for energy, materials, and medicine. Chem Commun 50:9228–9250

    Article  Google Scholar 

  22. MacFarlane DR, Tachikawa N, Forsyth M et al (2014) Energy applications of ionic liquids. Energy Environ Sci 7:232–250

    Article  Google Scholar 

  23. Zhu Y, Li C, Na B, Lv R, Chen B, Zhu J (2014) Polar phase formation and competition in the melt crystallization of poly (vinylidene fluoride) containing an ionic liquid. Mater Chem Phys 144:194–198

    Article  Google Scholar 

  24. Yeon S-H, Kim K-S, Choi S, Cha J-H, Lee H (2005) Characterization of PVDF(HFP) gel electrolytes based on 1-(2-Hydroxyethyl)-3-methyl imidazolium ionic liquids. J Phys Chem B 109:17928–17935

    Article  Google Scholar 

  25. Xin Z, Chu B, Neese B, Minren L, Zhang QM (2007) Electrical energy density and discharge characteristics of a poly(vinylidene fluoride-chlorotrifluoroethylene) copolymer. IEEE Trans Dielectr Electr Insul 14:1133–1138

    Article  Google Scholar 

  26. Liu Y, Ghaffari M, Zhao R, Lin J-H, Lin M, Zhang QM (2012) Enhanced electromechanical response of ionic polymer actuators by improving mechanical coupling between ions and polymer matrix. Macromolecules 45:5128–5133

    Article  Google Scholar 

  27. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39:683–706

    Article  Google Scholar 

  28. Seminara L, Capurro M, Cirillo P, Cannata G, Valle M (2011) Electromechanical characterization of piezoelectric PVDF polymer films for tactile sensors in robotics applications. Sens Actuators, A 169:49–58

    Article  Google Scholar 

  29. Ferreira JCC, Monteiro TS, Lopes AC, Costa CM, Silva MM, Machado AV, Lanceros-Mendez S (2015) Variation of the physicochemical and morphological characteristics of solvent casted poly(vinylidene fluoride) along its binary phase diagram with dimethylformamide. J Non-Cryst Solids 412:16–23

    Article  Google Scholar 

  30. Correia DM, Goncalves R, Ribeiro C, Sencadas V, Botelho G, Ribelles JLG, Lanceros-Mendez S (2014) Electrosprayed poly(vinylidene fluoride) microparticles for tissue engineering applications. RSC Adv 4:33013–33021

    Article  Google Scholar 

  31. Ribeiro C, Sencadas V, Ribelles JLG, Lanceros-Méndez S (2010) Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride) electrospun membranes. Soft Mater 8:274–287

    Article  Google Scholar 

  32. Nalwa HS (1995) Ferroelectric polymers: chemistry, physics, and applications. Taylor & Francis

  33. Skotheim TA, Elsenbaumer RL, Reynolds JR (1998) Handbook of conducting polymers. M. Dekker, New York

  34. Hong W, Meis C, Heflin JR, Montazami R (2014) Evidence of counterion migration in ionic polymer actuators via investigation of electromechanical performance. Sens Actuators, B 205:371–376

    Article  Google Scholar 

  35. Cho MS, Nam JD, Choi HR, Koo UC, Lee Y (2005) Key engineering materials

  36. Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31:10–36

    Article  Google Scholar 

  37. Terasawa N, Ono N, Hayakawa Y, Mukai K, Koga T, Higashi N, Asaka K (2011) Effect of hexafluoropropylene on the performance of poly(vinylidene fluoride) polymer actuators based on single-walled carbon nanotube–ionic liquid gel. Sens Actuators, B 160:161–167

    Article  Google Scholar 

  38. Imaizumi S, Kokubo H, Watanabe M (2011) Polymer actuators using ion-gel electrolytes prepared by self-assembly of ABA-triblock copolymers. Macromolecules 45:401–409

    Article  Google Scholar 

  39. Dias JC, Lopes AC, Magalhães B, Botelho G, Silva MM, Esperança JMSS, Lanceros-Mendez S (2015) High performance electromechanical actuators based on ionic liquid/poly(vinylidene fluoride). Polym Testing 48:199–205

    Article  Google Scholar 

  40. Costa AJ, Soromenho MR, Shimizu K, Marrucho IM, Esperança JM, Lopes JN, Rebelo LP (2012) Density, thermal expansion and viscosity of cholinium-derived ionic liquids. ChemPhysChem 13:1902–1909

    Article  Google Scholar 

  41. Costa AJL, Esperança JMSS, Marrucho IM, Rebelo LPN (2011) Densities and viscosities of 1-ethyl-3-methylimidazolium n-alkyl sulfates. J Chem Eng Data 56:3433–3441

    Article  Google Scholar 

  42. Dias JC, Correia DC, Lopes AC et al (2016) Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applications. J Mater Sci 1–9. doi:10.1007/s10853-016-9756-3

  43. Silva MP, Sencadas V, Botelho G, Machado AV, Rolo AG, Rocha JG, Lanceros-Mendez S (2010) α- and γ-PVDF: crystallization kinetics, microstructural variations and thermal behaviour. Mater Chem Phys 122:87–92

    Article  Google Scholar 

  44. Mejri R, Dias JC, Lopes AC et al (2015) Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene fluoride)/ionic liquid blends. Eur Polym J 71:304–313

    Article  Google Scholar 

  45. Xing C, Zhao M, Zhao L, You J, Cao X, Li Y (2013) Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polym Chem 4:5726–5734

    Article  Google Scholar 

  46. Wolf S, Feldmann C (2012) 2 [infinity] [Co{1,4-C6H4(CN)2}2{NTf2}2][SnI{Co(CO)4}3]2—a 2D coordination network with an intercalated carbonyl cluster. Dalton Trans 41:8455–8459

    Article  Google Scholar 

  47. Martins P, Costa CM, Benelmekki M, Botelho G, Lanceros-Mendez S (2012) On the origin of the electroactive poly(vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. CrystEngComm 14:2807–2811

    Article  Google Scholar 

  48. He L, Sun J, Wang X, Wang C, Song R, Hao Y (2013) Facile and effective promotion of β crystalline phase in poly(vinylidene fluoride) via the incorporation of imidazolium ionic liquids. Polym Int 62:638–646

    Article  Google Scholar 

  49. Bassett DC (1982) Developments in crystalline polymers. Elsevier Applied Science, London, New York

    Book  Google Scholar 

  50. Lanceros-Méndez S, Mano JF, Costa AM, Schmidt VH (2001) FTIR and DSC studies of mechanically deformed β-PVDF films. J Macromol Sci Phys 40 B 517–527

  51. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35:151–160

    Article  Google Scholar 

  52. Kremer F, Schönhals A (2012) Broadband dielectric spectroscopy. Springer, Berlin

  53. Leones R, Costa CM, Machado AV, Esperança JMSS, Silva MM, Lanceros-Méndez S (2013) Development of solid polymer electrolytes based on poly(vinylidene fluoride-trifluoroethylene) and the [N1 1 1 2(OH)][NTf2] ionic liquid for energy storage applications. Solid State Ionics 253:143–150

    Article  Google Scholar 

  54. Zhang R, Chen Y, Montazami R (2015) Ionic liquid-doped gel polymer electrolyte for flexible lithium-ion polymer batteries. Materials 8:2735

    Article  Google Scholar 

  55. Chen G-X, Zhang S, Zhou Z, Li Q (2015) Dielectric properties of poly(vinylidene fluoride) composites based on Bucky gels of carbon nanotubes with ionic liquids. Polym Compos 36:94–101

    Article  Google Scholar 

  56. Fragiadakis D, Dou S, Colby RH, Runt J (2008) Molecular mobility, ion mobility, and mobile ion concentration in poly(ethylene oxide)-based polyurethane ionomers. Macromolecules 41:5723–5728

    Article  Google Scholar 

  57. Leones R, Costa CM, Machado AV, Esperança JMSS, Silva MM, Lanceros-Méndez S (2015) Effect of ionic liquid anion type in the performance of solid polymer electrolytes based on poly(vinylidene fluoride-trifluoroethylene). Electroanalysis 27:457–464

    Article  Google Scholar 

  58. Martins PM, Ribeiro S, Ribeiro C, Sencadas V, Gomes AC, Gama FM, Lanceros-Mendez S (2013) Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Adv 3:17938–17944

    Article  Google Scholar 

  59. Stolte S, Arning J, Bottin-Weber U et al (2006) Anion effects on the cytotoxicity of ionic liquids. Green Chem 8:621–629

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013 and UID/Multi/04551/2013, projects PTDC/EEI-SII/5582/2014, PTDC/CTM-ENE/5387/2014, PEST-OE/EEA/UI04436/2015, and Grants SFRH/BD/90215/2012 (J.C.D.), SFRH/BD/111478/2015 (S.R.), SFRH/BPD/90870/2012 (C.R.), SFRH/BPD/112547/2015 (C.M.C.) and SFRH/BPD/107826/2015 (M.S.M.), and a FCT Investigator contract (J.M.S.S.E). The authors thank Solvay for kindly supplying the high-quality materials. The authors thank financial support from the Basque Government Industry Department under the ELKARTEK Program. SLM thanks the Diputación Foral de Bizkaia for financial support under the Bizkaia Talent program; European Union’s Seventh Framework Programme; Marie Curie Actions—People; Grant agreement no. 267230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ribeiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, J.C., Martins, M.S., Ribeiro, S. et al. Electromechanical actuators based on poly(vinylidene fluoride) with [N1 1 1 2(OH)][NTf2] and [C2mim] [C2SO4]. J Mater Sci 51, 9490–9503 (2016). https://doi.org/10.1007/s10853-016-0193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0193-0

Keywords

Navigation